12 resultados para ONE-LAYER MODEL
em University of Queensland eSpace - Australia
Resumo:
A study of the structure of the daytime atmospheric boundary layer during onshore flow over a narrow coastal plain is presented. The main emphasis of the study is on the nature and causes of heating and cooling observed in the boundary layer temperature profiles. Measurements included vertical temperature profiles above at least two sites derived from radiosondes and aircraft, as well as surface estimates of radiative and sensible heat fluxes. Surface meteorological and pilot balloon data were also available, providing further evidence of short-term changes in atmospheric boundary layer structure. The Manawatu case was representative of autumnal anticyclonic conditions with weak pressure gradients, and illustrated typical diurnal development of a convective boundary layer over a coastal plain bordered by mountain ranges, with a transition from a stable nocturnal situation to a well-mixed profile in the afternoon. The profiles show surface input of heat propagating upwards through the boundary layer during the day, as well as entrainment of heat at the top associated with shear induced turbulence and/or penetrative convection. Applying a one-dimensional model, estimates of boundary layer heat budget components were obtained for four time periods during the day. Later periods were affected by cumulus cloud development at the top of the boundary layer, resulting in significant changes in individual components. Input of sensible heat from the surface decreased, while the addition of heat to the boundary layer from both cloud condensation and advection increased.
Resumo:
Recently, methods for computing D-optimal designs for population pharmacokinetic studies have become available. However there are few publications that have prospectively evaluated the benefits of D-optimality in population or single-subject settings. This study compared a population optimal design with an empirical design for estimating the base pharmacokinetic model for enoxaparin in a stratified randomized setting. The population pharmacokinetic D-optimal design for enoxaparin was estimated using the PFIM function (MATLAB version 6.0.0.88). The optimal design was based on a one-compartment model with lognormal between subject variability and proportional residual variability and consisted of a single design with three sampling windows (0-30 min, 1.5-5 hr and 11 - 12 hr post-dose) for all patients. The empirical design consisted of three sample time windows per patient from a total of nine windows that collectively represented the entire dose interval. Each patient was assigned to have one blood sample taken from three different windows. Windows for blood sampling times were also provided for the optimal design. Ninety six patients were recruited into the study who were currently receiving enoxaparin therapy. Patients were randomly assigned to either the optimal or empirical sampling design, stratified for body mass index. The exact times of blood samples and doses were recorded. Analysis was undertaken using NONMEM (version 5). The empirical design supported a one compartment linear model with additive residual error, while the optimal design supported a two compartment linear model with additive residual error as did the model derived from the full data set. A posterior predictive check was performed where the models arising from the empirical and optimal designs were used to predict into the full data set. This revealed the optimal'' design derived model was superior to the empirical design model in terms of precision and was similar to the model developed from the full dataset. This study suggests optimal design techniques may be useful, even when the optimized design was based on a model that was misspecified in terms of the structural and statistical models and when the implementation of the optimal designed study deviated from the nominal design.
Resumo:
The aim of this report is to describe the use of WinBUGS for two datasets that arise from typical population pharmacokinetic studies. The first dataset relates to gentamicin concentration-time data that arose as part of routine clinical care of 55 neonates. The second dataset incorporated data from 96 patients receiving enoxaparin. Both datasets were originally analyzed by using NONMEM. In the first instance, although NONMEM provided reasonable estimates of the fixed effects parameters it was unable to provide satisfactory estimates of the between-subject variance. In the second instance, the use of NONMEM resulted in the development of a successful model, albeit with limited available information on the between-subject variability of the pharmacokinetic parameters. WinBUGS was used to develop a model for both of these datasets. Model comparison for the enoxaparin dataset was performed by using the posterior distribution of the log-likelihood and a posterior predictive check. The use of WinBUGS supported the same structural models tried in NONMEM. For the gentamicin dataset a one-compartment model with intravenous infusion was developed, and the population parameters including the full between-subject variance-covariance matrix were available. Analysis of the enoxaparin dataset supported a two compartment model as superior to the one-compartment model, based on the posterior predictive check. Again, the full between-subject variance-covariance matrix parameters were available. Fully Bayesian approaches using MCMC methods, via WinBUGS, can offer added value for analysis of population pharmacokinetic data.
Resumo:
Quantitatively predicting mass transport rates for chemical mixtures in porous materials is important in applications of materials such as adsorbents, membranes, and catalysts. Because directly assessing mixture transport experimentally is challenging, theoretical models that can predict mixture diffusion coefficients using Only single-component information would have many uses. One such model was proposed by Skoulidas, Sholl, and Krishna (Langmuir, 2003, 19, 7977), and applications of this model to a variety of chemical mixtures in nanoporous materials have yielded promising results. In this paper, the accuracy of this model for predicting mixture diffusion coefficients in materials that exhibit a heterogeneous distribution of local binding energies is examined. To examine this issue, single-component and binary mixture diffusion coefficients are computed using kinetic Monte Carlo for a two-dimensional lattice model over a wide range of lattice occupancies and compositions. The approach suggested by Skoulidas, Sholl, and Krishna is found to be accurate in situations where the spatial distribution of binding site energies is relatively homogeneous, but is considerably less accurate for strongly heterogeneous energy distributions.
Resumo:
Objective: The objective of the study was to characterise the population pharmacokinetic properties of itraconazole and its active metabolite hydroxyitraconazole in a representative paediatric population of cystic fibrosis and bone marrow transplant (BMT) patients and to identify patient characteristics influencing the pharmacokinetics of itraconazole. The ultimate goals were to determine the relative bioavailability between the two oral formulations (capsules vs oral solution) and to optimise dosing regimens in these patients. Methods: All paediatric patients with cystic fibrosis or patients undergoing BMT at The Royal Children's Hospital, Brisbane, QLD, Australia, who were prescribed oral itraconazole for the treatment of allergic bronchopulmonary aspergillosis (cystic fibrosis patients) or for prophylaxis of any fungal infection (BMT patients) were eligible for the study. Blood samples were taken from the recruited patients as per an empirical sampling design either during hospitalisation or during outpatient clinic visits. ltraconazole and hydroxy-itraconazole plasma concentrations were determined by a validated high-performance liquid chromatography assay with fluorometric detection. A nonlinear mixed-effect modelling approach using the NONMEM software to simultaneously describe the pharmacokinetics of itraconazole and its metabolite. Results: A one-compartment model with first-order absorption described the itraconazole data, and the metabolism of the parent drug to hydroxy-itraconazole was described by a first-order rate constant. The metabolite data also showed one-compartment characteristics with linear elimination. For itraconazole the apparent clearance (CLitraconazole) was 35.5 L/hour, the apparent volume of distribution (V-d(itraconazole)) was 672L, the absorption rate constant for the capsule formulation was 0.0901 h(-1) and for the oral solution formulation was 0.96 h-1. The lag time was estimated to be 19.1 minutes and the relative bioavailability between capsules and oral solution (F-rel) was 0.55. For the metabolite, volume of distribution, V-m/(F (.) f(m)), and clearance, CL/(F (.) fm), were 10.6L and 5.28 L/h, respectively. The influence of total bodyweight was significant, added as a covariate on CLitraconazoie/F and V-d(itraconazole)/F (standardised to a 70kg person) using allometric three-quarter power scaling on CLitraconazole/F, which therefore reflected adult values. The unexplained between-subject variability (coefficient of variation %) was 68.7%, 75.8%, 73.4% and 61.1% for CLitraconazoie/F, Vd(itraconazole)/F, CLm/(F (.) fm) and F-rel, respectively. The correlation between random effects of CLitraconazole and Vd((itraconazole)) was 0.69. Conclusion: The developed population pharmacokinetic model adequately described the pharmacokinetics of itraconazole and its active metabolite, hydroxy-itraconazole, in paediatric patients with either cystic fibrosis or undergoing BMT. More appropriate dosing schedules have been developed for the oral solution and the capsules to secure a minimum therapeutic trough plasma concentration of 0.5 mg/L for these patients.
Resumo:
This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.
Resumo:
Objective: It is usual that data collected from routine clinical care is sparse and unable to support the more complex pharmacokinetic (PK) models that may have been reported in previous rich data studies. Informative priors may be a pre-requisite for model development. The aim of this study was to estimate the population PK parameters of sirolimus using a fully Bayesian approach with informative priors. Methods: Informative priors including prior mean and precision of the prior mean were elicited from previous published studies using a meta-analytic technique. Precision of between-subject variability was determined by simulations from a Wishart distribution using MATLAB (version 6.5). Concentration-time data of sirolimus retrospectively collected from kidney transplant patients were analysed using WinBUGS (version 1.3). The candidate models were either one- or two-compartment with first order absorption and first order elimination. Model discrimination was based on computation of the posterior odds supporting the model. Results: A total of 315 concentration-time points were obtained from 25 patients. Most data were clustered at trough concentrations with range of 1.6 to 77 hours post-dose. Using informative priors, either a one- or two-compartment model could be used to describe the data. When a one-compartment model was applied, information was gained from the data for the value of apparent clearance (CL/F = 18.5 L/h), and apparent volume of distribution (V/F = 1406 L) but no information was gained about the absorption rate constant (ka). When a two-compartment model was fitted to the data, the data were informative about CL/F, apparent inter-compartmental clearance, and apparent volume of distribution of the peripheral compartment (13.2 L/h, 20.8 L/h, and 579 L, respectively). The posterior distribution of the volume distribution of central compartment and ka were the same as priors. The posterior odds for the two-compartment model was 8.1, indicating the data supported the two-compartment model. Conclusion: The use of informative priors supported the choice of a more complex and informative model that would otherwise have not been supported by the sparse data.
Resumo:
Objective: To investigate the population pharmacokinetics and the enteral bioavailability of phenytoin in neonates and infants with seizures. Methods: Data (5 mg kg-1 day-1) from 83 patients were obtained retrospectively from the medical records following written ethical approval. A one-compartment model was fitted to the data using NONMEM with FOCE-interaction. Between-subject variability (BSV) and interoccasion variability (IOV) were modelled exponentially together with a log transform-both-sides exponential residual unexplained variance (RUV) model. Covariates in nested models were screened for significance (X2, 1, 0.01). Model validity was determined by bootstrapping with replacement (N=500 samples) from the dataset. Results: The parameters of final pharmacokinetic were: Clearance (L h-1) = 0.826.(current Weight [kg]/70)0.75.(1+0.0692.(Postnatal age [days]-11)); Volume of distribution (L) = 74.2.(current Weight [kg]/70); Enteral bioavailability = 0.76; Absorption rate constant (h-1) = 0.167. BSV for clearance and volume of distribution were 74.2% and 65.6%, respectively. The IOV in clearance was 54.4%. The RUV was 51.1%. Final model parameters deviated from mean bootstrap estimates by
Resumo:
This paper presents a detailed analysis of adsorption of supercritical fluids on nonporous graphitized thermal carbon black. Two methods are employed in the analysis. One is the molecular layer structure theory (MLST), proposed recently by our group, and the other is the grand canonical Monte Carlo (GCMC) simulation. They were applied to describe the adsorption of argon, krypton, methane, ethylene, and sulfur hexafluoride on graphitized thermal carbon black. It was found that the MLST describes all the experimental data at various temperatures well. Results from GCMC simulations describe well the data at low pressure but show some deviations at higher pressures for all the adsorbates tested. The question of negative surface excess is also discussed in this paper.
Resumo:
The leaching of elements from the surface of charged fly ash particles is known to be an unsteady process. The mass transfer resistance provided by the diffuse double layer has been quantified as one of the reasons for this delayed leaching. In this work, a model based on mass transfer principles for predicting the concentration of calcium hydroxide in the diffuse double layer is presented. The significant difference between predicted calcium hydroxide concentration and the experimentally measured is explained.
Resumo:
The performance of intermolecular potential models on the adsorption of carbon tetrachloride on graphitized thermal carbon black at various temperatures is investigated. This is made possible with the extensive experimental data of Machin and Ross(1), Avgul et al.,(2) and Pierce(3) that cover a wide range of temperatures. The description of all experimental data is only possible with the allowance for the surface mediation. If this were ignored, the grand canonical Monte Carlo (GCMC) simulation results would predict a two-dimensional (2D) transition even at high temperatures, while experimental data shows gradual change in adsorption density with pressure. In general, we find that the intermolecular interaction has to be reduced by 4% whenever particles are within the first layer close to the surface. We also find that this degree of surface mediation is independent of temperature. To understand the packing of carbon tetrachloride in slit pores, we compared the performance of the potential models that model carbon tetrachloride as either five interaction sites or one site. It was found that the five-site model performs better and describes the imperfect packing in small pores better. This is so because most of the strength of fluid-fluid interaction between two carbon tetrachloride molecules comes from the interactions among chlorine atoms. Methane, although having tetrahedral shape as carbon tetrachloride, can be effectively modeled as a pseudospherical particle because most of the interactions come from carbon-carbon interaction and hydrogen negligibly contributes to this.
Resumo:
We investigate the critical behavior of the spectral weight of a single quasiparticle, one of the key observables in experiment, for the particular case of the transverse Ising model. Series expansions are calculated for the linear chain and the square and simple cubic lattices. For the chain model, a conjectured exact result is discovered. For the square and simple cubic lattices, series analyses are used to estimate the critical exponents. The results agree with the general predictions of Sachdev [Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)].