52 resultados para Nuclear staining
em University of Queensland eSpace - Australia
Resumo:
Filaggrin is a keratin filament associated protein that is expressed in granular layer keratinocytes and derived by sequential proteolysis from a polyprotein precursor termed profilaggrin. Depending on the species, each profilaggrin molecule contains between 10 and 20 filaggrin subunits organized as tandem repeats with a calcium-binding domain at the N-terminal end. We now report the characterization of the complete mouse gene. The structural organization of the mouse gene is identical to the human profilaggrin gene and consists of three exons with a 4 kb intron within the 5' noncoding region and a 1.7 kb intron separating the sequences encoding the calcium-binding EF-hand motifs. A processed pseudogene was found embedded within the second intron. The third and largest exon encodes the second EF-hand, a basic domain (designated the B-domain) followed by 12 filaggrin repeats and a unique C-terminal tail domain. A polyclonal anti-body raised against the conceptually translated sequence of the B-domain specifically stained keratohyalin granules and colocalized with a filaggrin antibody in granular layer cells. In upper granular layer cells, B-domain containing keratohyalin granules were in close apposition to the nucleus and, in some cells, appeared to be completely engulfed by the nucleus. In transition layer cells, B-domain staining was evident in the nucleus whereas filaggrin staining remained cytoplasmic. Nuclear staining of the B-domain was also observed in primary mouse keratinocytes induced to differentiate. This study has also revealed significant sequence homology between the mouse and human promoter sequences and in the calcium-binding domain but the remainder of the protein-coding region shows substantial divergence.
Resumo:
Skeletal muscle differentiation and the activation of muscle-specific gene expression are dependent on the concerted action of the MyoD family and the MADS protein, MEF2, which function in a cooperative manner. The steroid receptor coactivator SRC-2/GRIP-1/TIF-2, is necessary for skeletal muscle differentiation, and functions as a cofactor for the transcription factor, MEF2. SRC-P belongs to the SRC family of transcriptional coactivators/cofactors that also includes SRC-1 and SRC-3/RAC-3/ACTR/ AIB-1. In this study we demonstrate that SRC-P is essentially localized in the nucleus of proliferating myoblasts; however, weak (but notable) expression is observed in the cytoplasm. Differentiation induces a predominant localization of SRC-P to the nucleus; furthermore, the nuclear staining is progressively more localized to dot-like structures or nuclear bodies. MEF2 is primarily expressed in the nucleus, although we observed a mosaic or variegated expression pattern in myoblasts; however, in myotubes all nuclei express MEF2. GRIP-1 and MEF2 are coexpressed in the nucleus during skeletal muscle differentiation, consistent with the direct interaction of these proteins. Rhabdomyosarcoma (RMS) cells derived from malignant skeletal muscle tumors have been proposed to be deficient in cofactors. Alveolar RMS cells very weakly express the steroid receptor coactivator, SRC-P, in a diffuse nucleocytoplasmic staining pattern. MEF2 and the cofactors, SRC-1 and SRC-3 are abundantly expressed in alveolar and embryonal RMS cells; however, the staining is not localized to the nucleus. Furthermore, the subcellular localization and transcriptional activity of MEF2C and a MEF2-dependent reporter are compromised in alveolar RMS cells. In contrast, embryonal RMS cells express SRC-2 in the nucleus, and MEF2 shuttles from the cytoplasm to the nucleus after serum withdrawal. In conclusion, this study suggests that the steroid receptor coactivator SRC-P and MEF2 are localized to the nucleus during the differentiation process. In contrast, RMS cells display aberrant transcription factor SRC localization and expression, which may underlie certain features of the RMS phenotype.
Resumo:
The majority of epithelial ovarian carcinomas are of serous subtype, with most women presenting at an advanced stage. Approximately 70% respond to initial chemotherapy but eventually relapse. We aimed to find markers of treatment response that might be suitable for routine use, using the gene expression profile of tumor tissue. Thirty one women with histologically-confirmed late-stage serous ovarian cancer were classified into 3 groups based on response to treatment (nonresponders, responders with relapse less than 12 months and responders with no relapse within 12 months). Gene expression profiles of these specimens were analyzed with respect to treatment response and survival (minimum 36 months follow-up). Patients' clinical features did not correlate with prognosis, or with specific gene expression patterns of their tumors. However women who did not respond to treatment could be distinguished from those who responded with no relapse within 12 months based on 34 gene transcripts (p < 0.02). Poor prognosis was associated with high expression of inhibitor of differentiation-2 (ID2) (p = 0.001). High expression of decorin (DCN) and ID2 together was strongly associated with reduced survival (p = 0.003), with an estimated 7-fold increased risk of dying (95% CI 1.9-29.6; 14 months survival) compared with low expression (44 months). Immunohistochemical analysis revealed both nuclear and cytoplasmic distribution of ID2 in ovarian tumors. High percentage of nuclear staining vas associated with poor survival, although not statistically significantly. In conclusion, elevated expression of ID2 and DCN was significantly associated with poor prognosis in a homogeneous group of ovarian cancer patients for whom survival could not be predicted from clinical factors. (c) 2006 Wiley-Liss, Inc.
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB+ APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
Dendritic cells (DC) are potent APCs that enter resting tissues as precursors and, after Ag exposure, differentiate and migrate to draining lymph nodes. The phenotype of RelB knockout mice implicates this member of the NF kappa B/Rel family in DC differentiation. To further elucidate the role of RelB in DC differentiation, mRNA, intracellular protein expression, and DNA binding activity of RelB were examined in immature and differentiated human DC, as well as other PB mononuclear cell populations. RelB protein and mRNA were detected constitutively in lymphocytes and in activated monocytes, differentiated DC, and monocyte-derived DC. Immunohistochemical staining demonstrated RelB within the differentiated lymph node interdigitating DC and follicular DC, but not undifferentiated DC in normal skin. Active nuclear RelB was detected by supershift assay only in differentiated DC derived from either PB precursors or monocytes and in activated B cells. These RelB(+) APC were potent stimulators of the MLR. The data indicate that RelB expression is regulated both transcriptionally and post-translationally in myeloid cells. Within the nucleus, RelB may specifically transactivate genes that are critical for APC function.
Resumo:
The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The prostate-specific antigen-related serine protease gene, kallikrein 4 (KLK4), is expressed in the prostate and, more importantly, overexpressed in prostate cancer. Several KLK4 mRNA splice variants have been reported, but it is still not clear which of these is most relevant to prostate cancer. Here we report that, in addition to the full-length KLK4 (KLK4-254) transcript, the exon 1 deleted KLK4 transcripts, in particular, the 5'-truncated KLK4-205 transcript, is expressed in prostate cancer. Using V5/His6 and green fluorescent protein (GFP) carboxy terminal tagged expression constructs and immunocytochemical approaches, we found that hK4-254 is cytoplasmically localized, while the N-terminal truncated hK4-205 is in the nucleus of transfected PC-3 prostate cancer cells. At the protein level, using anti-hK4 peptide antibodies specific to different regions of hK4-254 (N-terminal and C-terminal), we also demonstrated that endogenous hK4-254 (detected with the N-terminal antibody) is more intensely stained in malignant cells than in benign prostate cells, and is secreted into seminal fluid. In contrast, for the endogenous nuclear-localized N-terminal truncated hK4-205 form, there was less difference in staining intensity between benign and cancer glands. Thus, KLK4-254/hK4-254 may have utility as an immunohistochemical marker for prostate cancer. Our studies also indicate that the expression levels of the truncated KLK4 transcripts, but not KLK4-254, are regulated by androgens in LNCaP cells. Thus, these data demonstrate that there are two major isoforms of hK4 (KLK4-254/hK4-254 and KLK4-205/hK4-205) expressed in prostate cancer with different regulatory and expression profiles that imply both secreted and novel nuclear roles.
Resumo:
This paper examines the role of the Canberra Commission in terms of consolidating and influencing the agenda on international negotiations towards the elimination of nuclear weapons. The Commission's Report is significant for two main reasons. First, it represents a unique form of disarmament diplomacy by the Australian Government which combined the post-Cold War international climate of security cooperation with the foreign policy aspirations of an activist middle power. Second, the Report refutes the strategic, technological and political arguments against nuclear elimination in a comprehensive and convincing manner, arguing that without elimination, the world faces increased threats of nuclear proliferation and nuclear terrorism. This paper thus concludes that the Canberra Commission has been instrumental in strengthening the taboo against the possession, testing or use of nuclear weapons.
Resumo:
Crystals of recombinant importin alpha, the nuclear-import receptor, have been obtained at two different pH conditions by vapour diffusion using sodium citrate as precipitant and dithiothreitol as an additive. At pH 4-5, the crystals have the symmetry of the trigonal space group P3(1)21 or P3(2)21 (a = b = 78.0, c = 255.8 Angstrom, gamma = 120 degrees); at pH 6-7, the crystals have the symmetry of the orthorhombic space group P2(1)2(1)2(1) (a = 78.5, b = 89.7, c = 100.5 Angstrom). In both cases, there is probably one molecule of importin ct in the asymmetric unit. At least one of the crystal forms diffracts to a resolution higher than 3 Angstrom using the laboratory X-ray source; the crystals are suitable for crystal structure determination.
Resumo:
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 Angstrom resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.
Resumo:
alpha-Conotoxin ImI derives from the venom of Conus imperialis and is the first and only small-peptide ligand that selectively binds to the neuronal alpha(7) homopentameric subtype of the nicotinic acetylcholine receptor (nAChR). This receptor subtype is a possible drug target for several neurological disorders. The cysteines are connected in the pairs Cys2-Cys8 and Cys3-Cys12, To date it is the only alpha-conotoxin with a 4/3 residue spacing between the cysteines, The structure of ImI has been determined by H-1 NMR spectroscopy in aqueous solution, The NMR structure is of high quality, with a backbone pairwise rmsd of 0.34 Angstrom for a family of 19 structures, and comprises primarily a series of nested beta turns. Addition of organic solvent does not perturb the solution structure. The first eight residues of ImI are identical to the larger, but related, conotoxin EpI and adopt a similar structure, despite a truncated second loop. Residues important for binding of ImI to the alpha 7 nAChR are all clustered on one face of the molecule. Once further binding data for EPI and ImI are available, the ImI structure will allow for design of novel alpha(7) nAChR-specific agonists and antagonists with a wide range of potential pharmaceutical applications.
Resumo:
Objective. Differentiated dendritic cells (DC) and other antigen-presenting cells are characterized by the nuclear location of RelB, a member of the nuclear factor kappa B/Rel family. To characterize and enumerate differentiated DC in rheumatoid arthritis (RA) peripheral blood (PB), synovial fluid (SF), and synovial tissue (ST), the expression and location of RelB were examined. Methods. RelB protein expression and cellular location were determined in RA PB, SF, and ST by flow cytometry and immunohistochemical analysis of purified cells or formalin-fixed tissue. DNA-binding activity of RelB was determined by electrophoretic: mobility shift-Western immunoblotting assays. Results. Circulating RA PBDC resembled normal immature PBDC in that they did not express intracellular RelB protein. In RA ST serial sections, cells containing nuclear RelB (nRelB) were enriched in perivascular regions. A mean +/- SD of 84 +/- 10% of these cells were DC. The remaining nRelB+,HLA-DR+ cells comprised B cells and macrophages. Only 3% of sorted SFDC contained nRelB, However, RelB present in the nucleus of these SFDC was capable of binding DNA, and therefore capable of transcriptional activity. Conclusion. Circulating DC precursors differentiate and express RelB after entry into rheumatoid ST. Differentiated DC can thus be identified by immunohistochemistry in formalin-fixed ST. Signals for DC maturation may differ between RA ST and SF, resulting in nuclear location of RelB predominantly in ST. This is likely to have functional consequences for the DC in these sites.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally truncated mouse receptor protein with peptides corresponding to the monopartite NLS from the simian virus 40 (SV40) large T-antigen, and the bipartite NLS from nucleoplasmin. We show that the monopartite SV40 large T-antigen NLS binds to two binding sites on the receptor, similar to what was observed in yeast importin-alpha. The nucleoplasmin NLS-importin-alpha complex shows, for the first time, the mode of binding of bipartite NLSs to the receptor. The two basic clusters in the NLS occupy the two binding sites used by the monopartite NLS, while the sequence linking the two basic clusters is poorly ordered, consistent with its tolerance to mutations. The structures explain the structural basis for binding of diverse NLSs to the sole receptor protein. (C) 2000 Academic Press.
Resumo:
We have shown that 44 amino acid residues N-terminal segment of kappa-casein exhibits considerable a-helical structure. This prompted us to investigate the structures of the remaining segments of kappa-casein. Thus, in this study the chemical synthesis and structure elucidation of the peptide 45-87 amino acid residues of kappa-casein is reported. The peptide was assembled using solid phase peptide synthesis methodology on pam resin, cleaved via HF, freeze dried and, after purification, characterised by mass spectrometry (observed m/z 4929; calculated mit 4929.83). The amino acid sequence of the peptide is: CKPVALINNQFLPYPYYAKPAAVRSPAQILQWQVLSNTVPAKA Its structure elucidation has been carried out using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. CD spectrum of the peptide shows it to be a random structure in water but in 30% trifluoroethanol the peptide exhibits considerable structure. The 1D and 2D NMR spectra corroborated the results of CD. The structure elucidation of the peptide using TOCSY and NOESY NMR techniques will be discussed.