4 resultados para Nuclear power plants.

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basis of this work was to investigate the relative environmental impacts of various power generators knowing that all plants are located in totally different environments and that different receptors will experience different impacts. Based on IChemE sustainability metrics paradigm, we calculated potential environmental indicators (P-EI) that represent the environmental burden of masses of potential pollutants discharged into different receiving media. However, a P-EI may not be of significance, as it may not be expressed at all in different conditions, so to try and include some receiver significance we developed a methodology to take into account some specific environmental indicators (S-EI) that refer to the environmental attributes of a specific site. In this context, we acquired site specific environmental data related to the airsheds and water catchment areas in different locations for a limited number of environmental indicators such as human health (carcinogenic) effects, atmospheric acidification, photochemical (ozone) smog and eutrophication. The S-EI results from this particular analysis show that atmospheric acidification has highest impact value while health risks due to fly ash emissions are considered not to be as significant. This is due to the fact that many coal power plants in Australia are located in low population density air sheds. The contribution of coal power plants to photochemical (ozone) smog and eutrophication were not significant. In this study, we have considered emission related data trends to reflect technology performance (e.g., P-EI indicators) while a real sustainability metric can be associated only with the specific environmental conditions of the relevant sites (e.g., S-EI indicators).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.