121 resultados para Nonlinear programming problem
em University of Queensland eSpace - Australia
Resumo:
We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent. In the first part of this work it is assumed that the coeffcients Q and h are at least continuous. Moreover Q is positive on overline Omega and lambda > 0 is a parameter. We examine the common effect of the mean curvature and the shape of the graphs of the coeffcients Q and h on the existence of low energy solutions. In the second part of this work we consider the same problem with Q replaced by - Q. In this case the problem can be supercritical and the existence results depend on integrability conditions on Q and h.
Resumo:
in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.
Resumo:
We investigate the effect of the coefficient of the critical nonlinearity for the Neumann problem on the existence of least energy solutions. As a by-product we establish a Sobolev inequality with interior norm.
Resumo:
The problem of designing spatially cohesive nature reserve systems that meet biodiversity objectives is formulated as a nonlinear integer programming problem. The multiobjective function minimises a combination of boundary length, area and failed representation of the biological attributes we are trying to conserve. The task is to reserve a subset of sites that best meet this objective. We use data on the distribution of habitats in the Northern Territory, Australia, to show how simulated annealing and a greedy heuristic algorithm can be used to generate good solutions to such large reserve design problems, and to compare the effectiveness of these methods.
Resumo:
In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A new approach to identify multivariable Hammerstein systems is proposed in this paper. By using cardinal cubic spline functions to model the static nonlinearities, the proposed method is effective in modelling processes with hard and/or coupled nonlinearities. With an appropriate transformation, the nonlinear models are parameterized such that the nonlinear identification problem is converted into a linear one. The persistently exciting condition for the transformed input is derived to ensure the estimates are consistent with the true system. A simulation study is performed to demonstrate the effectiveness of the proposed method compared with the existing approaches based on polynomials. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conventionally, protein structure prediction via threading relies on some nonoptimal method to align a protein sequence to each member of a library of known structures. We show how a score function (force field) can be modified so as to allow the direct application of a dynamic programming algorithm to the problem. This involves an approximation whose damage can be minimized by an optimization process during score function parameter determination. The method is compared to sequence to structure alignments using a more conventional pair-wise score function and the frozen approximation. The new method produces results comparable to the frozen approximation, but is faster and has fewer adjustable parameters. It is also free of memory of the template's original amino acid sequence, and does not suffer from a problem of nonconvergence, which can be shown to occur with the frozen approximation. Alignments generated by the simplified score function can then be ranked using a second score function with the approximations removed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
A chance constrained programming model is developed to assist Queensland barley growers make varietal and agronomic decisions in the face of changing product demands and volatile production conditions. Unsuitable or overlooked in many risk programming applications, the chance constrained programming approach nonetheless aptly captures the single-stage decision problem faced by barley growers of whether to plant lower-yielding but potentially higher-priced malting varieties, given a particular expectation of meeting malting grade standards. Different expectations greatly affect the optimal mix of malting and feed barley activities. The analysis highlights the suitability of chance constrained programming to this specific class of farm decision problem.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.