8 resultados para Noncoding Rna
em University of Queensland eSpace - Australia
Resumo:
Large numbers of noncoding RNA transcripts (ncRNAS) are being revealed by complementary DNA cloning and genome tiling array studies in animals. The big and as yet largely unanswered question is whether these transcripts are relevant. A paper by Willingham et al. shows the way forward by developing a strategy for large-scale functional screening of ncRNAs, involving small interfering RNA knockdowns in cell-based screens, which identified a previously unidentified ncRNA repressor of the transcription factor NFAT. It appears likely that ncRNAs constitute a critical hidden layer of gene regulation in complex organisms, the understanding of which requires new approaches in functional genomics.
Resumo:
In recent years, there have been increasing numbers of transcripts identified that do not encode proteins, many of which are developmentally regulated and appear to have regulatory functions. Here, we describe the construction of a comprehensive mammalian noncoding RNA database (RNAdb) which contains over 800 unique experimentally studied noncoding RNAs (ncRNAs), including many associated with diseases and/or developmental processes. The database is available at http://research.imb.uq. edu.au/RNAdb and is searchable by many criteria. It includes microRNAs and snoRNAs, but not infrastructural RNAs, such as rRNAs and tRNAs, which are catalogued elsewhere. The database also includes over 1100 putative antisense ncRNAs and almost 20000 putative ncRNAs identified in high-quality murine and human cDNA libraries, with more to be added in the near future. Many of these RNAs are large, and many are spliced, some alternatively. The database will be useful as a foundation for the emerging field of RNomics and the characterization of the roles of ncRNAs in mammalian gene expression and regulation.
Resumo:
With the sequencing and annotation of genomes and transcriptomes of several eukaryotes, the importance of noncoding RNA (ncRNA)-RNA molecules that are not translated to protein products-has become more evident. A subclass of ncRNA transcripts are encoded by highly regulated, multi-exon, transcriptional units, are processed like typical protein-coding mRNAs and are increasingly implicated in regulation of many cellular functions in eukaryotes. This study describes the identification of candidate functional ncRNAs from among the RIKEN mouse full-length cDNA collection, which contains 60,770 sequences, by using a systematic computational filtering approach. We initially searched for previously reported ncRNAs and found nine murine ncRNAs and homologs of several previously described nonmouse ncRNAs. Through our computational approach to filter artifact-free clones that lack protein coding potential, we extracted 4280 transcripts as the largest-candidate set. Many clones in the set had EST hits, potential CpG islands surrounding the transcription start sites, and homologies with the human genome. This implies that many candidates are indeed transcribed in a regulated manner. Our results demonstrate that ncRNAs are a major functional subclass of processed transcripts in mammals.
Resumo:
The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes and the range of genetic and epigenetic phenomena that are RNA-directed suggests that the traditional view of the structure of genetic regulatory systems in animals and plants may be incorrect. ncRNA dominates the genomic output of the higher organisms and has been shown to control chromosome architecture, mRNA turnover and the developmental timing of protein expression, and may also regulate transcription and alternative splicing. This paper re-examines the available evidence and suggests a new framework for considering and understanding the genomic programming of biological complexity, autopoletic development and phenotypic variation. BioEssays 25:930-939,2003. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Short proteins play key roles in cell signalling and other processes, but their abundance in the mammalian proteome is unknown. Current catalogues of mammalian proteins exhibit an artefactual discontinuity at a length of 100 aa, so that protein abundance peaks just above this length and falls off sharply below it. To clarify the abundance of short proteins, we identify proteins in the FANTOM collection of mouse cDNAs by analysing synonymous and nonsynonymous substitutions with the computer program CRITICA. This analysis confirms that there is no real discontinuity at length 100. Roughly 10% of mouse proteins are shorter than 100 aa, although the majority of these are variants of proteins longer than 100 aa. We identify many novel short proteins, including a dark matter'' subset containing ones that lack detectable homology to other known proteins. Translation assays confirm that some of these novel proteins can be translated and localised to the secretory pathway.
Resumo:
Do non-coding RNAs that are derived from the introns and exons of protein-coding and non-protein-coding genes represent a fundamental advance in the genetic operating system of higher organisms? Recent evidence from comparative genomics and molecular genetics indicates that this might be the case. If so, there will be profound consequences for our understanding of the genetics of these organisms, and in particular how the trajectories of differentiation and development and the differences among individuals and species are genomically programmed. But how might this hypothesis be tested?
Resumo:
The past few years have brought about a fundamental change in our understanding and definition of the RNA world and its role in the functional and regulatory architecture of the cell. The discovery of small RNAs that regulate many aspects of differentiation and development have joined the already known non-coding RNAs that are involved in chromosome dosage compensation, imprinting, and other functions to become key players in regulating the flow of genetic information. It is also evident that there are tens or even hundreds of thousands of other non-coding RNAs that are transcribed from the mammalian genome, as well as many other yet-to-be-discovered small regulatory RNAs. In the recent symposium RNA: Networks & Imaging held in Heidelberg, the dual roles of RNA as a messenger and a regulator in the flow of genetic information were discussed and new molecular genetic and imaging methods to study RNA presented.