32 resultados para Non-gaussian statistical mechanics
em University of Queensland eSpace - Australia
Resumo:
The concept of local concurrence is used to quantify the entanglement between a single qubit and the remainder of a multiqubit system. For the ground state of the BCS model in the thermodynamic limit the set of local concurrences completely describes the entanglement. As a measure for the entanglement of the full system we investigate the average local concurrence (ALC). We find that the ALC satisfies a simple relation with the order parameter. We then show that for finite systems with a fixed particle number, a relation between the ALC and the condensation energy exposes a threshold coupling. Below the threshold, entanglement measures besides the ALC are significant.
Resumo:
Three kinds of integrable Kondo impurity additions to one-dimensional q-deformed extended Hubbard models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realisations of the reflection equation algebras in an impurity Hilbert space. The models are solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
Density functional theory for adsorption in carbons is adapted here to incorporate a random distribution of pore wall thickness in the solid, and it is shown that the mean pore wall thickness is intimately related to the pore size distribution characteristics. For typical carbons the pore walls are estimated to comprise only about two graphene layers, and application of the modified density functional theory approach shows that the commonly used assumption of infinitely thick walls can severely affect the results for adsorption in small pores under both supercritical and subcritical conditions. Under supercritical conditions the Henry's law coefficient is overpredicted by as much as a factor of 2, while under subcritical conditions pore wall heterogeneity appears to modify transitions in small pores into a sequence of smaller ones corresponding to pores with different wall thicknesses. The results suggest the need to improve current pore size distrubution analysis methods to allow for pore wall heterogeneity. The density functional theory is further extended here to allow for interpore adsorbate interactions, and it appears that these interaction are negligible for small molecules such as nitrogen but significant for more strongly interacting heavier molecules such as butane, for which the traditional independent pore model may not be adequate.
Resumo:
We show that the projected Gross-Pitaevskii equation (PGPE) can be mapped exactly onto Hamilton's equations of motion for classical position and momentum variables. Making use of this mapping, we adapt techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature measurement for the same system. Using this method we show that the critical temperature for condensation in a homogeneous Bose gas on a lattice with a uv cutoff increases with the interaction strength. We discuss how to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behavior of the specific heat.
Resumo:
Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly requires the estimation of their conditional distribution. The indicator and probability kriging approaches of current nonparametric geostatistics provide approximations for estimating conditional distributions. They do not, however, provide results similar to those in the cumbersome implementation of simultaneous cokriging of indicators. This paper presents a new formulation termed successive cokriging of indicators that avoids the classic simultaneous solution and related computational problems, while obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A successive minimization of the estimation variance of probability estimates is performed, as additional data are successively included into the estimation process. In addition, the approach leads to an efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual probabilities.
Resumo:
By stochastic modeling of the process of Raman photoassociation of Bose-Einstein condensates, we show that, the farther the initial quantum state is from a coherent state, the farther the one-dimensional predictions are from those of the commonly used zero-dimensional approach. We compare the dynamics of condensates, initially in different quantum states, finding that, even when the quantum prediction for an initial coherent state is relatively close to the Gross-Pitaevskii prediction, an initial Fock state gives qualitatively different predictions. We also show that this difference is not present in a single-mode type of model, but that the quantum statistics assume a more important role as the dimensionality of the model is increased. This contrasting behavior in different dimensions, well known with critical phenomena in statistical mechanics, makes itself plainly visible here in a mesoscopic system and is a strong demonstration of the need to consider physically realistic models of interacting condensates.
Resumo:
We present a tractable theory of transport of simple fluids in cylindrical nanopores, considering trajectories of molecules between diffuse wall collisions at low-density, and including viscous flow contributions at higher densities. The model is validated through molecular dynamics simulations of supercritical methane transport, over a wide range of conditions. We find excellent agreement between model and simulation at low to medium densities. However, at high densities the model tends to over-predict the transport behaviour, due to a large decrease in surface slip that is not well represented by the model. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores.
Resumo:
We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection, and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n
Resumo:
Knowledge of the adsorption behavior of coal-bed gases, mainly under supercritical high-pressure conditions, is important for optimum design of production processes to recover coal-bed methane and to sequester CO2 in coal-beds. Here, we compare the two most rigorous adsorption methods based on the statistical mechanics approach, which are Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulation, for single and binary mixtures of methane and carbon dioxide in slit-shaped pores ranging from around 0.75 to 7.5 nm in width, for pressure up to 300 bar, and temperature range of 308-348 K, as a preliminary study for the CO2 sequestration problem. For single component adsorption, the isotherms generated by DFT, especially for CO2, do not match well with GCMC calculation, and simulation is subsequently pursued here to investigate the binary mixture adsorption. For binary adsorption, upon increase of pressure, the selectivity of carbon dioxide relative to methane in a binary mixture initially increases to a maximum value, and subsequently drops before attaining a constant value at pressures higher than 300 bar. While the selectivity increases with temperature in the initial pressure-sensitive region, the constant high-pressure value is also temperature independent. Optimum selectivity at any temperature is attained at a pressure of 90-100 bar at low bulk mole fraction of CO2, decreasing to approximately 35 bar at high bulk mole fractions. (c) 2005 American Institute of Chemical Engineers.
Resumo:
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multimode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.
Resumo:
A central feature in the Hilbert space formulation of classical mechanics is the quantisation of classical Lionville densities, leading to what may be termed Groenewold operators. We investigate the spectra of the Groenewold operators that correspond to Gaussian and to certain uniform Lionville densities. We show that when the classical coordinate-momentum uncertainty product falls below Heisenberg's limit, the Groenewold operators in the Gaussian case develop negative eigenvalues and eigenvalues larger than 1. However, in the uniform case, negative eigenvalues are shown to persist for arbitrarily large values of the classical uncertainty product.
Resumo:
We have previously found an association between variations in schizophrenia birth rates and varyinglevels of perinatal sunshine duration. This study examines whether such an association can also be found for Ža. affective psychosis, and Žb. broadly defined nonaffective psychoses. Data for individuals born between 1931 and 1970 in Australia with ICD9 Other PsychosisŽ295–299.were obtained from the Queensland Mental Health Statistical System. ‘Affective psychosis’ included affective psychosis, schizo-affective psychosis, and depressive and excitative non-organic psychoses. ‘Non-affective psychosis’ included chizophrenia, paranoid disorders and other non-organic psychoses. Those receiving both affective and non-affective psychotic diagnoses were excluded. Rates per 10,000 live monthly general population births were calculated. For each month, we assessed the agreementŽusing the kappa statistic. between trends in Ža. birth rates and Žb. long-term trends in seasonally adjusted perinatal sunshine duration. The analyses were performed separately for males and females. There were 6265 with non-affective psychosis ŽMs3964 rate 66r10,000; Fs2299 44r10,000. and 2858 with affective psychosisŽMs1392 24r10,000; Fs1466 28r10,000.. There were no significant associations between Ža. affective psychosis birth rates for either males or females and Žb. sunshine duration. There was a significant association between nonaffective psychosis birth rates for males only and Žb. sunshine duration Žkappas0.15 p-0.001.. This suggests that, as a risk factor, the effect of reduced perinatal sunshine is specifically associated with males who develop non-affective psychosis. The Stanley Foundation supported this project.