5 resultados para Non-aqueous solvents
em University of Queensland eSpace - Australia
Resumo:
The syntheses and characterization of two new redox active cyclam ligands ferrocenylmethyl-(6-methyl-1,4,8,11-tetraazacyclotetradec-6-yl)-amine(L-3) and 1, 1'-ferrocenylmethyl-bis(6-methyl-1,4,8,11-tetraazacyclotetradec-6-yl)-amine (L-4) are reported. The compounds each possess a ferrocenyl group bearing one (L-3) or two (L-4) appended macrocycles linked by their exocyclic amino groups and the crystal structures of both compounds have been determined. Anion binding of L-3 and L-4 was investigated by electrochemical titrations where H-bonding to each macrocycle causing a shift in the Fc(+/0) redox potential was used as a reporter of guest binding. The Zn-II complex of L-3 has also been isolated and characterized structurally. These compounds were analysed for their capacity to electrochemically recognize anions in both aqueous and non-aqueous solution. We have found that L-3, L-4 and [ZnL3-](2+) sense Cl- and AcO- anions in MeCN-CH2Cl2, a function that is lost in aqueous solution.
Resumo:
A simple and effective method for purifying photoluminescent water-soluble surface passivated PbS nanocrystals has been developed. Centrifuging at high speeds removes PbS nanocrystals that exhibit strong red band edge photoluminescence from an original solution containing multiple nanocrystalline species with broad photoluminescence spectra. The ability to purify the PbS nanocrystals allowed two-photon photoluminescence spectroscopy to be performed on water-soluble PbS nanocrystals and be attributed to band edge recombination. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Several occupational carcinogens are metabolized by polymorphic enzymes. The distribution of the polymorphic enzymes N-acetyltransferase 2 (NAT2; substrates: aromatic amines), glutathione S-transferase M1 (GSTM1; substrates: e.g., reactive metabolites of polycyclic aromatic hydrocarbons), and glutathione S-transferase T1 (GSTT1; substrates: small molecules with 1 - 2 carbon atoms) were investigated. Material and Methods: At the urological department in Lutherstadt Wittenberg, 136 patients with a histologically proven transitional cell cancer of the urinary bladder were investigated for all occupations performed for more than 6 months. Several occupational and non-occupational risk factors were asked. The genotypes of NAT2, GSTM1, and GSTT1 were determined from leucocyte DNA by PCR. Results: Compared to the general population in Middle Europe, the percentage of GSTT1 negative persons (22.1%) was ordinary; the percentage of slow acetylators (59.6%) was in the upper normal range, while the percentage of GSTM1 negative persons (58.8%) was elevated in the entire group. Shifts in the distribution of the genotypes were observed in subgroups who had been exposed to asbestos (6/6 GSTM1 negative, 5/6 slow acetylators), rubber manufacturing (8/10 GSTM1 negative), and chlorinated solvents (9/15 GSTM1 negative). Conclusions: The overrepresentation of GSTM1 negative bladder cancer patients also in this industrialized area and more pronounced in several occupationally exposed subgroups points to an impact of the GSTM1 negative genotype in bladder carcinogenesis.
Resumo:
The process of adsorption of two dissociating and two non-dissociating aromatic compounds from dilute aqueous solutions on an untreated commercially available activated carbon (B.D.H.) was investigated systematically. All adsorption experiments were carried out in pH controlled aqueous solutions. The experimental isotherms were fitted into four different models (Langmuir homogenous Models, Langmuir binary Model, Langmuir-Freundlich single model and Langmuir-Freundlich double model). Variation of the model parameters with the solution pH was studied and used to gain further insight into the adsorption process. The relationship between the model parameters and the solution pH and pK(a) was used to predict the adsorption capacity in molecular and ionic form of solutes in other solution. A relationship was sought to predict the effect of pH on the adsorption systems and for estimating the maximum adsorption capacity of carbon at any pH where the solute is ionized reasonably well. N-2 and CO2 adsorption were used to characterize the carbon. X-ray Photoelectron Spectroscopy (XPS) measurement was used for surface elemental analysis of the activated carbon.
Resumo:
n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.