15 resultados para Nitrous-oxide Production

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or N-G-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N-2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this achievement turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently described process of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) has a great potential to save capital and operating costs for wastewater treatment plants. However, the presence of glycogen-accumulating organisms (GAOs) and the accumulation of nitrous oxide (N2O) can severely compromise the advantages of this process. In this study, these two issues were investigated using a lab-scale sequencing batch reactor performing SNDPR over a 5-month period. The reactor was highly enriched in polyphosphate-accumulating organisms (PAOs) and GAOs representing around 70% of the total microbial community. PAOs were the dominant population at all times and their abundance increased, while GAOs population decreased over the study period. Anoxic batch tests demonstrated that GAOs rather than denitrifying PAOs were responsible for denitrification. NO accumulated from denitrification and more than half of the nitrogen supplied in a reactor cycle was released into the atmosphere as NO. After mixing SNDPR sludge with other denitrifying sludge, N2O present in the bulk liquid was reduced immediately if external carbon was added. We therefore suggest that the N2O accumulation observed in the SNDPR reactor is an artefact of the low microbial diversity facilitated by the use of synthetic wastewater with only a single carbon source. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effectiveness of behavioural thermoregulation in reptiles is amplified by cardiovascular responses, particularly by differential rates of heart beat in response to heating and cooling (heart-rate hysteresis). Heart-rate hysteresis is ecologically important in most lineages of ectothermic reptile' and we demonstrate that heart-rate hysteresis in the lizard Pogona vitticeps is mediated by prostaglandins. In a control treatment (administration of saline), heart rates during heating were significantly faster than during cooling at any given body temperature. When cyclooxygenase 1 and 2 enzymes were inhibited, heart rates during heating were not significantly different from those during cooling. Administration of agonists showed that thromboxane B-2 did not have a significant effect on heart rate, but prostacyclin and prostaglandin F-2alpha caused a significant increase (3.5 and 13.6 beats min(-1), respectively) in heart rate compared with control treatments. We speculate that heart-rate hysteresis evolved as a thermoregulatory mechanism that may ultimately be controlled by neurally induced stimulation of nitric oxide production, or maybe via photolytically induced production of vitamin D.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of mesoporous Al2O3 samples with different porous structures and phases were prepared and used as supports for Cu/Al2O3 catalysts. These catalysts were characterized by N-2 adsorption, NMR, TGA, XRD, and UV - vis spectroscopic techniques and tested for the catalytic reaction of N2O decomposition. The activity increased with the increasing calcination temperatures of supports from 450 to 900 degreesC; however, a further increase in calcination temperature up to 1200 degreesC resulted in a significant reduction in activity. Characterization revealed that the calcination temperatures of supports influenced the porous structures and phases of the supports, which in turn affected the dispersions, phases, and activities of the impregnated copper catalyst. The different roles of surface spinel, bulk CuAl2O4, and bulk CuO is clarified for N2O catalytic decomposition. Two mechanism schemes were thus proposed to account for the varying activities of different catalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The placement of monocular laser lesions in the adult cat retina produces a lesion projection zone (LPZ) in primary visual cortex (V1) in which the majority of neurons have a normally located receptive field (RF) for stimulation of the intact eye and an ectopically located RF ( displaced to intact retina at the edge of the lesion) for stimulation of the lesioned eye. Animals that had such lesions for 14 - 85 d were studied under halothane and nitrous oxide anesthesia with conventional neurophysiological recording techniques and stimulation of moving light bars. Previous work suggested that a candidate source of input, which could account for the development of the ectopic RFs, was long-range horizontal connections within V1. The critical contribution of such input was examined by placing a pipette containing the neurotoxin kainic acid at a site in the normal V1 visual representation that overlapped with the ectopic RF recorded at a site within the LPZ. Continuation of well defined responses to stimulation of the intact eye served as a control against direct effects of the kainic acid at the LPZ recording site. In six of seven cases examined, kainic acid deactivation of neurons at the injection site blocked responsiveness to lesioned-eye stimulation at the ectopic RF for the LPZ recording site. We therefore conclude that long-range horizontal projections contribute to the dominant input underlying the capacity for retinal lesion-induced plasticity in V1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims: The aim of the present study was to determine the role of cyclic adenosine monophosphate (cAMP) on arginase activity in a murine macrophage cell line (RAW264.7 cells) stimulated with lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans. Materials and methods: The cells were treated with A. actinomycetemcomitans LPS for 24 h. The effects of SQ22536 (an adenylyl cyclase inhibitor), ODQ (a guanylyl cyclase inhibitor), dibutyryl cAMP (a cAMP analog), 8-bromo cyclic guanosine monophosphate (a cGMP analog), forskolin (an adenylyl cylase activator), and cycloheximide (a protein synthesis inhibitor) on arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells were also determined. Arginase activity was assessed in LPS-stimulated cells in the presence of 3-isobutyl-1-methylxanthine (IBMX), siguazodan and rolipram [phosphodiesterase (PDE) inhibitors] as well as KT5720 [a protein kinase A (PKA) inhibitor]. Results: Arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells was suppressed by SQ22536 but not ODQ. Enhancement of arginase activity was observed in the presence of cAMP analog or forskolin but not cGMP analog. Cycloheximide blocked arginase activity in the cells in the presence of cAMP analog or forskolin with or without A. actinomycetemcomitans LPS. IBMX augmented arginase activity in A. actinomycetemcomitans LPS-stimulated cells. Rolipram (a PDE4 inhibitor) increased the levels of arginase activity higher than siguazodan (a PDE3 inhibitor) in the antigen-stimulated cells. The effect of cAMP analog or forskolin on arginase activity in the presence or absence of A. actinomycetemcomitans LPS was blocked by the PKA inhibitor (KT5720). Conclusion: The results of the present study suggest that A. actinomycetemcomitans LPS may stimulate arginase activity in murine macrophages (RAW264.7 cells) in a cAMP-PKA-dependent pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Worldwide, research and policy momentum is increasing in the move towards a hydrogen economy. Australia is one of the highest per capita users of energy, but relies heavily on fossil fuels to fulfil its energy requirements-thus making it one of the highest per capita polluters. It is also a country rich in natural resources, giving it the full range of options for a hydrogen economy. With the first Australian Hydrogen Study being completed by the end of 2003, there has as yet been little analysis of the options available to this country specifically. This paper reviews the resources, production and utilisation technology available for a hydrogen economy in Australia, and discusses some of the advantages and disadvantages of the different options. It points out that coal, natural gas, biomass and water are the most promising hydrogen sources at this stage, while solid oxide and molten carbonate fuel cells may hold the advantage in terms of current expertise for utilising hydrogen rich gases for stationary power in Australia. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed to produce thick (> 400 mu m) AlN surface layers oil aluminium plates at 540 degrees C, under nitrogen at atmospheric pressure. A critical element of the process is the use of Mg powder placed in close proximity to the Al plate surface. The Mg reduces/disrupts the natural, protective oxide film on the Al surface. The nitride layers form through two distinct modes, one growing outward from the Al plate surface and the other growing into the Al. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium oxide has been identified to be one of the best candidates for CO2 capture in zero-emission power-generation systems. However, it suffers a well-known problem of loss-in-capacity (i.e., its capacity of CO2 capture decreases after it undergoes cycles of carbonation/decarbonation). This problem is a potential obstacle to the adoption of the new technologies. This paper proposes a method of fabricating a CaO-based adsorbent without the problem of loss-in-capacity. An adsorbent was fabricated using the method and tested on a thermogravimetric analyzer. It was shown that the sorbent attained a utilization efficiency of more than 90% after 9 cycles of carbonation/decarbonation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.