2 resultados para Nino index and Dipole Mode Index (DMI)
em University of Queensland eSpace - Australia
Resumo:
The interplay between two perspectives that have recently been applied in the attitude area-the social identity approach to attitude-behaviour relations (Terry & Hogg, 1996) and the MODE model (Fazio, 1990a)-was examined in the present research. Two experimental studies were conducted to examine the role of group norms, group identification, attitude accessibility, and mode of behavioural decision-making in the attitude-behaviour relationship. In Study I (N = 211), the effects of norms and identification on attitude-behaviour consistency as a function of attitude accessibility and mood were investigated. Study 2 (N = 354) replicated and extended the first experiment by using time pressure to manipulate mode of behavioural decision-making. As expected, the effects of norm congruency varied as a function of identification and mode of behavioural decision-making. Under conditions assumed to promote deliberative processing (neutral mood/low time pressure), high identifiers behaved in a manner consistent with the norm. No effects emerged under positive mood and high time pressure conditions. In Study 2, there was evidence that exposure to an attitude-incongruent norm resulted in attitude change only under low accessibility conditions. The results of these studies highlight the powerful role of group norms in directing individual behaviour and suggest limited support for the MODE model in this context. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.