4 resultados para Nilpotent Semigroup
em University of Queensland eSpace - Australia
Resumo:
Questions about nilpotency of groups satisfying Engel conditions have been considered since 1936, when Zorn proved that finite Engel groups are nilpotent. We prove that 4-Engel groups are locally nilpotent. Our proof makes substantial use of both hand and machine calculations.
Resumo:
A group is termed parafree if it is residually nilpotent and has the same nilpotent quotients as a given free group. Since free groups are residually nilpotent, they are parafree. Nonfree parafree groups abound and they all have many properties in common with free groups. Finitely presented parafree groups have solvable word problems, but little is known about the conjugacy and isomorphism problems. The conjugacy problem plays an important part in determining whether an automorphism is inner, which we term the inner automorphism problem. We will attack these and other problems about parafree groups experimentally, in a series of papers, of which this is the first and which is concerned with the isomorphism problem. The approach that we take here is to distinguish some parafree groups by computing the number of epimorphisms onto selected finite groups. It turns out, rather unexpectedly, that an understanding of the quotients of certain groups leads to some new results about equations in free and relatively free groups. We touch on this only lightly here but will discuss this in more depth in a future paper.
Resumo:
We describe a new technique for finding efficient presentations for finite groups. We use it to answer three previously unresolved questions about the efficiency of group and semigroup presentations.
Resumo:
We present a Lorentz invariant extension of a previous model for intrinsic decoherence (Milburn 1991 Phys. Rev. A 44 5401). The extension uses unital semigroup representations of space and time translations rather than the more usual unitary representation, and does the least violence to physically important invariance principles. Physical consequences include a modification of the uncertainty principle and a modification of field dispersion relations, similar to modifications suggested by quantum gravity and string theory, but without sacrificing Lorentz invariance. Some observational signatures are discussed.