8 resultados para New York (State). Court of Special Sessions (New York)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Leaven of the Ancients, John Walbridge studies the appropriation of non–Peripatetic philosophical ideas by an anti–Aristotelian Islamic philosopher, Shihab al-Din al-Suhrawardi (d. 1191). He proposes a comprehensive explanation of the origin of Suhrawardi's philosophical system, a revival of the “wisdom of the Ancients” and its philosophical affiliations “grounded” in Greek philosophy (p. xiii). Walbridge attempts to uncover the reasons for Suhrawardi's rejection of the prevailing neo–Aristotelian synthesis in Islamic philosophy, Suhrawardi's knowledge and understanding of non–Aristotelian Greek philosophy, the ancient philosophers Suhrawardi was attempting to follow, the relationship between Suhrawardi's specific philosophical teachings (logic, ontology, physics, and metaphysics), and his understanding of non–Aristotelian ancient philosophy and the relationship between Suhrawardi's system and the major Greek philosophers, schools, and traditions—in particular the Presocratics, Plato, and the Stoics (p. 8). Copyright © 2003 Cambridge University Press

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of local concurrence is used to quantify the entanglement between a single qubit and the remainder of a multiqubit system. For the ground state of the BCS model in the thermodynamic limit the set of local concurrences completely describes the entanglement. As a measure for the entanglement of the full system we investigate the average local concurrence (ALC). We find that the ALC satisfies a simple relation with the order parameter. We then show that for finite systems with a fixed particle number, a relation between the ALC and the condensation energy exposes a threshold coupling. Below the threshold, entanglement measures besides the ALC are significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let g be the genus of the Hermitian function field H/F(q)2 and let C-L(D,mQ(infinity)) be a typical Hermitian code of length n. In [Des. Codes Cryptogr., to appear], we determined the dimension/length profile (DLP) lower bound on the state complexity of C-L(D,mQ(infinity)). Here we determine when this lower bound is tight and when it is not. For m less than or equal to n-2/2 or m greater than or equal to n-2/2 + 2g, the DLP lower bounds reach Wolf's upper bound on state complexity and thus are trivially tight. We begin by showing that for about half of the remaining values of m the DLP bounds cannot be tight. In these cases, we give a lower bound on the absolute state complexity of C-L(D,mQ(infinity)), which improves the DLP lower bound. Next we give a good coordinate order for C-L(D,mQ(infinity)). With this good order, the state complexity of C-L(D,mQ(infinity)) achieves its DLP bound (whenever this is possible). This coordinate order also provides an upper bound on the absolute state complexity of C-L(D,mQ(infinity)) (for those values of m for which the DLP bounds cannot be tight). Our bounds on absolute state complexity do not meet for some of these values of m, and this leaves open the question whether our coordinate order is best possible in these cases. A straightforward application of these results is that if C-L(D,mQ(infinity)) is self-dual, then its state complexity (with respect to the lexicographic coordinate order) achieves its DLP bound of n /2 - q(2)/4, and, in particular, so does its absolute state complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.