336 resultados para New Genera
em University of Queensland eSpace - Australia
Resumo:
Two new genera and four new species of monorchiid digeneans are described from the Great Barrier Reef and Moreton Bay, Queensland. Provitellus turrum n. g., n. sp. from Pseudocaranx dentex and Trachinotus coppingeri is characterised by the presence of vitelline follicles in the forebody, a single testis, a unipartite terminal organ and filamented eggs. Ovipusillus mayu n. g., n. sp. from Gnathanodon speciosus is characterised by the presence of two testes, vitelline follicles overlapping the ventral sucker and a large, complex cirrus-sac that contains a coiled eversible ejaculatory duct joined by the pars prostatica halfway along its length. Paramonorcheides pseudocaranxi n. sp. from Pseudocaranx dentex differs from other species described in this genus in the longer flatter forebody, entire ovary and the well-developed cirrus-sac. Chrisomon gaigai n. sp. from Trachinotus coppingeri and T botla is characterised by the unflattened forebody and transversely oval pharynx. Chrisomon is redefined to include species of Lasiotocus with a vitellarium composed of clusters of tubular acini, creating the following new combinations: C. albulae n. comb. for L. albulae Overstreet, 1969, C. ulua n. comb, for L. ulua Yamaguti, 1970 and C. weke n. comb, for L. weke Yamaguti, 1970. The diagnosis of Lasiotocus is amended accordingly and the new combinations, L. polynemi n. comb. and L. sunderbanensis n. comb., are created for C.polynemi Dutta, Hafeezullah & Manna, 1994 and C. sunderbanensis Dutta, Hafeezullah B Manna, 1994, respectively. Extrapolation of our collection data suggests that there may be as many as 80 species of monorchiids infecting carangid fishes in Australia and 180 species infecting carangids in all oceans of the world. The latter figure greatly exceeds the number of monorchiids described from all host families to date.
Resumo:
The following lepocreadiid species are described from Cheilodactylidae from south-western Australia. Cliveus peroni n. g., n. sp, from Nemadactylus valenciennesi is characterised by its attenuated forebody and C. acaenodera n. sp. from Dactylophora nigricans by its attenuated forebody, the pattern of forebody spination and the large cirrus-sac. Jericho chojeri n. g., n. sp. from N. valenciennesi has a large infundibuliform oral sucker and paired ani. Rugocavum n. g. is distinguished by the possession of a blind, wrinkled glandular pit on the postero-ventral surface of the forebody. R. nemadactyli n. sp. from N. valenciennesi has its vitelline field restricted to the hindbody, whereas in R. morwong n. sp, from N. valenciennesi the vitelline field reaches into the forebody. Paraneocreadium australiense Kruse, 1978 from N. valenciennesi is redescribed and its coiled internal seminal vesicle and lobed gonads are considered distinctive features. Scaphatrema nemadactyli (Kurochkin & Korotaeva, 1972) n. g., n. comb. from N. valenciennesi has a wrinkled, boat-shaped body, a 'Lepidapedon-like' cirrus-sac and multiple testes; it was originally placed in the genus Multitestis, but these characters suggest that a new genus should be erected for it within the subfamily Lepidapedinae.
Resumo:
Four new species and two new genera of thelastomatoid are described from several species of Australian burrowing cockroaches (Blattodea: Panesthiinae; Geoscapheinae). Corpicracens munozae n. g., n. sp., Pseudodesmicola botti n. g., n. sp. and Cephalobellus nolani n. sp. are described from Geoscapheus dilatatus (Blattodea: Geoscapheinae) from Mendooran, New South Wales; one new thelastomatid, Blattophila praelongicauda n. sp., is described from Panesthia cribrata from Lamington National Park, Queensland. Corpicracens munozae n. g., n. sp. is long and slender, with a monodelphic female reproductive system, a clavate corpus with a slight posterior pseudobulb, oval eggs flattened at the poles, and a relatively robust, subulate tail. Pseudodesmicola botti n. g., n. sp. is slightly more robust in body, also has a monodelphic reproductive system, a cylindrical corpus with a posterior pseudobulb, ovoid eggs and a very long, subulate tail. Cephalobellus nolani n. sp. is distinguished from other members of the genus by its relatively short and broad body and egg shape. Lastly, Blattophila praelongicauda n. sp. is distinguished from other members of the genus by having eggs with a single, polar operculum, tail length, and position of the vulva, nerve ring and excretory pore. An additional species, known by a single specimen from Panesthia tryoni tryoni from the same locality is characterised but not named. The species found are all relatively rare parasites of Australian burrowing cockroaches, each having a prevalence of less than 10%.
Resumo:
Agapophytinae subf.n. is a highly diverse lineage of Australasian Therevidae, comprising eight described and two new genera: Agapophytus Guerin-Meneville, Acupalpa Krober, Acraspisa Krober, Belonalys Krober, Bonjeania Irwin & Lyneborg, Parapsilocephala Krober, Acatopygia Krober, Laxotela Winterton & Irwin, Pipinnipons gen.n. and Patanothrix gen.n. A genus-level cladistic analysis of the subfamily was undertaken using sixty-eight adult morphological characters and c. 1000 base pairs of the elongation factor-1 alpha (EF-1 alpha) protein coding gene. The morphological data partition produced three most parsimonious cladograms, whereas the molecular data partition gave a single most parsimonious cladogram, which did not match any of the cladograms found in the morphological analysis. The level of congruence between the data partitions was determined using the partition homogeneity test (HTF) and Wilcoxon signed ranks rest. Despite being significantly incongruent in at least one of the incongruence tests, the partitions were combined in a simultaneous analysis. The combined data yielded a single cladogram that was better supported than that of the individual partitions analysed separately. The relative contributions of the data partitions to support for individual nodes on the combined cladogram were investigated using Partitioned Bremer Support. The level of support for many nodes on the combined cladogram was non-additive and often greater than the sum of support for the respective nodes on individual partitions. This synergistic interaction between incongruent data partitions indicates a common phylogenetic signal in both partitions. It also suggests that criteria for partition combination based solely on incongruence may be misleading. The phylogenetic relationships of the genera are discussed using the combined data. A key to genera of Agapophytinae is presented, with genera diagnosed and figured. Two new genera are described: Patanothrix with a new species (Pat. skevingtoni) and Pat. wilsoni (Mann) transferred from Parapsilocephala, and Pipinnipons with a new species (Pip. kroeberi). Pipinnipons fascipennis (Krober) is transferred from Squamopygin Krober and Pip. imitans (Mann) is transferred from Agapophytus. Agapophytus bicolor (Krober) is transferred from Parapsilocephala. Agapophytus varipennis Mann is synonymised with Aga, queenslandi Krober and Aga. flavicornis Mann is synonymised with Aga. pallidicornis (Krober).
Resumo:
The phylogenetic relationships of members of Eudorylini (Diptera: Pipunculidae: Pipunculinae) were explored. Two hundred and fifty-seven species of Eudorylini from all biogeographical regions and all known genera were examined. Sixty species were included in an exemplar-based phylogeny for the tribe. Two new genera are described, Clistoabdominalis and Dasydorylas. The identity of Eudorylas Aczél, the type genus for Eudorylini, has been obscure since its inception. The genus is re-diagnosed and a proposal to stabilize the genus and tribal names is discussed. An illustrated key to the genera of Pipunculidae is presented and all Eudorylini genera are diagnosed. Numerous new generic synonyms are proposed. Moriparia nigripennis Kozánek & Kwon is preoccupied by Congomyia nigripennis Hardy when both are transferred to Claraeola, so Cla. koreana Skevington is proposed as a new name for Mo. nigripennis.
Resumo:
Almost half of the 4822 described beeflies in the world belong to the subfamily Anthracinae, with most of the diversity found in three cosmopolitan tribes: Villini, Anthracini, and Exoprosopini. The Australian Exoprosopini previously contained three genera, Ligyra Newman, Pseudopenthes Roberts and Exoprosopa Macquart. Pseudopenthes is an Australian endemic, with two species including Ps. hesperis, sp. nov. from Western Australia. Two new species of the exoprosopine Atrichochira Hesse, Atr. commoni, sp. nov. and Atr. paramonovi, sp. nov., are also described from Australia, extending the generic distribution from Africa. Cladistic analysis clarified the phylogenetic relationships between the recognised groups of the Exoprosopini and determined generic limits on a world scale. Inclusion of 18 Australian exoprosopines placed the Australian species in the context of the world fauna. The Exoprosopini contains six large groups. The basal group I contains species previously included in Exoprosopa to which the name Defilippia Lioy is applied. Group II contains Heteralonia Rondani, Atrichochira, Micomitra Bowden, Pseudopenthes, and Diatropomma Bowden. Colossoptera Hull is newly synonymised with Heteralonia. Group III is a paraphyletic assemblage of Pterobates Bezzi and Exoprosopa including the Australian Ex. sylvana ( Fabricius). Ligyra is paraphyletic, forming two well-separated clades. The African clade is described as Euligyra Lambkin, gen. nov., which, together with Litorhina Bezzi and Hyperalonia Rondani, form group IV. The Australian group V is true Ligyra. The remaining monophyletic lineage of exoprosopines, group VI, the Balaana-group of genera, shows evidence of an evolutionary radiation of beeflies in semi-arid Australia. Phylogenetic analysis of all 42 species of the Balaana-group of genera formed a basis for delimiting genera. Seven new genera are described by Lambkin & Yeates: Balaana, Kapua, Larrpana, Munjua, Muwarna, Palirika and Wurda. Four non-Australian species belong to Balaana. Thirty two new Australian species are described: Bal. abscondita, Bal. bicuspis, Bal. centrosa, Bal. gigantea, Bal. kingcascadensis, K. corusca, K. irwini, K. westralica, Lar. collessi, Lar. zwicki, Mun. erugata, Mun. lepidokingi, Mun. paralutea, Mun. trigona, Muw. vitreilinearis, Pa. anaxios, Pa. basilikos, Pa. blackdownensis, Pa. bouchardi, Pa. cyanea, Pa. danielsi, Pa. decora, Pa. viridula, Pa. whyalla, W. emu, W. impatientis, W. montebelloensis, W. norrisi, W. patrellia, W. skevingtoni, W. windorah, and W. wyperfeldensis. The following new combinations are proposed: from Colossoptera: Heteralonia latipennis (Brunetti); from Exoprosopa: Bal. grandis (Pallas), Bal. efflatounbeyi (Paramonov), Bal. latelimbata ( Bigot), Bal. obliquebifasciata ( Macquart), Bal. tamerlan (Portschinsky), Bal. onusta ( Walker), Def. busiris (Jaennicke), Def. efflatouni ( Bezzi), Def. eritreae (Greathead), Def. gentilis ( Bezzi), Def. luteicosta ( Bezzi), Def. minos (Meigen), Def. nigrifimbriata ( Hesse), Def. rubescens ( Bezzi), K. adelaidica ( Macquart), Lar. dimidiatipennis ( Bowden), Muw. stellifera ( Walker), and Pa. marginicollis ( Gray); from Ligyra: Eu. enderleini ( Paramonov), Eu. mars ( Bezzi), Eu. monacha (Klug), Eu. paris ( Bezzi), Eu. sisyphus ( Fabricius), and Eu. venus (Karsch).
Resumo:
The thelastomatoid fauna of two species of wood-burrowing cockroach (Blattodea, Blaberidae), Panesthia cribrata and Panesthia tryoni tryoni, from Lamington National Park, Australia, is described. The following eight new species and three new genera of thelastomatid are proposed: Bilobostoma exerovulva n. g., n. sp.; Cordonicola gibsoni n. sp.; Coronostoma australiae n. sp.; Desmicola ornata n. sp.; Hammerschmidtiella hochi n. sp.; Malaspinanema goateri n. g., n. sp.; Travassosinema jaidenae n. sp.; and Tsuganema cribratum n. g., n. sp. Additional data are given for Blattophila sphaerolaima and Leidynemella fusiformis. Of the 11 species reported, nine were found in P. cribrata and ten in P. tryoni tryoni. Such levels of thelastomatoid species richnessness in single host species are exceptional. Only the mole cricket, Gryllotalpa africana (23), and the domestic cockroach, Periplaneta americana (20), have higher reported richness. Three species, T jaidenae, C. australiae and D. ornata, were found either exclusively or significantly more prevalently in P tryoni tryoni than in R cribrata. Species of Travassosinema, Coronostoma and Desmicola have been found previously only in millipedes (Diplopoda), a fact that suggests that there is a greater degree of niche overlap between R tryoni tryoni and millipedes than for R cribrata.
Resumo:
The thelastomatoid fauna of Macropanesthia rhinoceros was examined from 13 localities across its range in Queensland, Australia. Nine species of thelastomatoids, including two representing new genera, Geoscaphenema megaovum n. g., n. sp. and Jaidenema rhinoceratum n. g., n. sp., were found. Macropanesthia rhinoceros is reported as a new host for seven species previously recorded from Panesthia cribrata (Blaberidae: Panesthiinae) and P. tryoni tryoni, viz, Blattophila sphaerolaima, Leidynemella fusiformis, Cordonicola gibsoni, Travassosinema jaidenae, Coronostoma australiae, Hammerschmidtiella hochi and Desmicola ornata. Overall estimated richness for the system ranged from 10.1-13.5 species. The high degree of parasite faunal overlap between M. rhinoceros and the two Panesthia species is surprising given the disparate ecological niches that they occupy; P. cribrata and P. tryoni tryoni burrow in, and feed upon, moist decaying wood and require a climate that is moist all year round, whereas M. rhinoceros burrows in loose soil, feeds on fallen leaf litter and is tolerant of much drier environments.
Resumo:
A diagnosis is given for the lecithasterid genus Hysterolecithoides Yamaguti, 1934, which is now found to have two to six (possibly seven) vitelline masses. The species H. frontilatus (Manter, 1969) is returned to the genus, having been considered a member of the bunocotylid genus Neotheletrum by recent authors. It is redescribed from Siganus nebulosus, Moreton Bay, and S. doliatus, Lizard Island, Great Barrier Reef and New Caledonia, with emphasis on the presence of Juel's organ, a uterine seminal receptacle and the blind sac associated with the genital atrium. It differs from its congeners in the trajectory of the pars prostatica which recurves dorsally to the sinus-sac. Oligolecithoides Shen, 1982 is synonymised with Hysterolecithoides and O. trilobatus Shen, 1982 is synomised with H. epinepheli Yamaguti, 1934. Machidatrema Leon-Regagnon, 1998 is diagnosed, and found to be close to Hysterolecithoides, but differs in the lack of a blind-sac projecting from the dorsal genital atrium, by its tandem testes, the coiling of the uterus between the testes and the ovary, and the ventral excretory pore. M. leonae n. sp. is described from Siganus fuscescens, S. lineatus, S. doliatus, S. corallinus, S. vulpinus and Scarus globiceps at Heron Island, Queensland. It differs from its closest congener, M. akeh, in the muscular and tegumental flap over the genital pore and details of the terminal genitalia. M. chilostoma (Machida, 1980) and M. kyphosi (Yamaguti, 1970) are redescribed from Kyphosus vaigiensis from Heron Island. Neotheletrum Gibson & Bray, 1979 is diagnosed: it differs from Hysterolecithoides in its confluent excretory arms, blind seminal receptacle (no Juel's organ) and uniformly tripartite vitellarium. A cladistic analysis suggests that M. chilostoma and M. kyphosi are not best accommodated in Machidatrema, that Machidatrema (sensu stricto) is monophyletic and that Hysterolecithoides is paraphyletic. Hysterolecithoides and Machidatrema are considered hysterolecithine lecithasterids, whilst Neotheletrum is retained as an opisthadenine bunocotylid.
Resumo:
Aponurus chelebesoi n. sp. is described from Chaetodon auriga, C. citrinellus, C. ephippium, C. flavirostris, C. lineolatus, C. melannotus, C. mertensii, C. pelewensis, C. lunulatus, C. vagabundus, Coradion altivelis, Forcipiger flavissimus, Heniochus acuminatus, H. chrysostomus and H. monoceros from the southern coast of New Caledonia. It is distinguished from most species in the genera Aponurus (synonym Brachadena) and Lecithophyllum by its claviform (as opposed to oval to subglobular) vitelline lobes. Three species, A. pyriformis, Lecithophyllum vogeae and Brachadena cheilonis, have similar claviform vitelline lobes, but differ from A. chelebesoi in their tandem testes and the distinct egg-size.
Resumo:
The status of Petalocotyle Ozaki, 1934 within the Gyliauchenidae Goto & Matsudaira, 1918 is reviewed. Two new species, P. adenometra from Prionurus microlepidotus (Amity Point, Queensland, Australia) and P. diverticulata from Acanthurus nigrofuscus and A. lineatus (Heron Island, Queensland, Australia), are described. The body plan of Petalocotyle conforms to that of members of the Gyliauchenidae (oral sucker absent, well-developed pharynx, complex oesophagus and characteristic male terminal genitalia), indicating justifiable inclusion in this family. A new diagnosis is given for the genus, such that Petalocotyle is now identified by the presence of an anterior, protuberant ventral sucker, long caeca, a large, sigmoid cirrus-sac containing a coiled ejaculatory duct, and an extensive vitellarium. We suggest that, of all the known genera of gyliauchenids, Petalocotyle may most closely resemble the 'archaetypal gyliauchenid', that is, it may be placed basally within the radiation of the Gyliauchenidae. However, derived characters, like diverticula in the reproductive system, indicate that some characters of individual members of Petalocotyle may be considered advanced and do not reflect an archaetypal condition. Parallels in the structure of the male and female genitalia of Robphildollfusium Paggi & Orecchia, 1963 and Petalocotyle, along with the shared morphology of the digestive tract, indicate possible phylogenetic links between the two genera. This affinity is difficult to infer using morphology alone and recommend that Robphildollfusium remain detached from the Gyliauchenidae.
Resumo:
A distinct type of cellular organization was found in two species of the planctomycete genus Pirellula, Pirellula marina and Pirellula staleyi. Both species possess two distinct regions within the cell which are separated by a single membrane. The major region of the cell, the pirellulosome, contains the fibrillar condensed nucleoid. The other area, the polar cap region, forms a continuous layer surrounding the entire pirellulosome and displays a cap of asymmetrically distributed material at one cell pole. Immuno- and cytochemical-labelling of P. marina demonstrated that DNA is located exclusively within the pirellulosome; cell RNA is concentrated in the pirellulosome, with some RNA also located in the polar cap region.
Resumo:
The status of all of the putative member genera of the subfamily Aephnidiogeninae is reconsidered, based mainly on the morphology of the terminal genitalia, Aephnidiogenes Nicoll, 1915 is the only genus retained in the Aaephnidiogeninae. Aephnidiogenes major Yamaguti, 1934 from Diagramma labiosum from the southern Great Barrier Reef is redescribed with particular reference to the terminal genitalia, and is shown to lack a true cirrussac, a condition considered to be diagnostic of the Aephnidiogeninae. Holorchis Stossich, 1901 is placed in the subfamily Lepidapedinae. Holorchis pycnoporus Stossich, 1901 from Pagellus acarne from off Spanish Sahara and from Diplodus vulgaris from off Italy and H. legendrei Dollfus, 1946 from Sparodon durbanensis and D. sargus from off eastern Cape Province, South Africa and from Pagellus erythrinus from the Adriatic Sea and Italy are studied and illustrated. The terminal genitalia of H. pycnoporus are found to be enigmatic, but those of H. legendrei are found to fit clearly into the 'Lepidapedon-like' pattern. A new genus Austroholorchis is erected in the Lepidapedinae, with A. sprenti (Gibson, 1987) n. comb. as the type-species. Its diagnostic features are its ani, infundibuliform oral sucker and the position of the ovary at about mid-level of the uterus. A. sprenti is illustrated, its hosts in Queensland waters being Sillago maculata, S, analis and S. ciliata. A, levis n. sp. is described from Sillago bassensis from south-western Western Australia. The genus Pseudaephnidiogenes Yamaguti, 1971 is placed in the Lepidapedinae. P. rhabdosargi (Prudhoe, 1956) from Rhabdosargus sarba from off Natal, South Africa is illustrated and the terminal genitalia of P. rhabdosargi from R. sarba and from R. holubi from off eastern Cape Province and Pseudaephnidiogenes vossi Bray, 1985 from Caffrogobius nudiceps from off eastern Cape Province, South Africa are illustrated. The genus Pseudoholorchis Yamaguti, 1958 is placed in the subfamily Lepocreadiinae. The terminal genitalia of P. pulcher (Manter, 1954) from Latridopsis ciliaris from New Zealand are illustrated, The genus Neolepocreadium Thomas, 1960 is placed in the Lepocreadiidae.
Resumo:
Pretestis laticaecum is described from the small intestine of the freshwater turtle Emydura krefftil. The new species can be distinguished from its congener P. australianus by the following characters; significantly smaller ovary, main lymph vessels reach anterior to posterior testis, genital atrium in mid-oesophageal region, small vitelline follicles clumped around the ovary and significantly larger caeca overlapping. The, position of this species and related genera in fish, the life cycle of P. australianus and the presence of P. laticaecum in turtles suggest that it is a relatively recent host capture.