3 resultados para Neutron activation analysis (NAA)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tang sancai is one of the most important types of Chinese ceramics. To determine the provenance of Tang sancai is important to study ancient trade and other issues. In this paper we compare ICP-MS trace elements and TIMS Sr-Nd isotopes of visibly similar Tang sancai from two major production centres Gongxian and Yaozhou. The variation in contents/ratios of many of > 40 trace elements is small for samples from Gongxian, yet is considerably bigger for that from Yaozhou. However, the variation in Sr-87/Sr-86 and Nd-143/Nd-144 isotopic ratios is very small for samples from both places. Gongxian and Yaozhou samples have distinctive Sr-Nd isotopic and trace element features despite their similarity in major elements, and these analysis data can be interpreted with geochemistry, indicating that Sr and Nd isotopes have great potential in ceramic provenance studies. The distinct characterisation of these samples provides valuable criteria for identifying provenance of Tang sancai of uncertain origin. Two modern fakes are also analysed, and they can as well be distinguished from antique Tang sancai using above criteria. (c) 2005 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. NKT cells have diverse immune regulatory functions including activation of cells involved in Th1- and Th2-type immune activities. Most previous studies have investigated the functions of NKT cells as a single family but more recent evidence indicates the distinct functional properties of NKT cell subpopulation. This study aims to determine whether NKT cell subpopulations have different stimulatory activities on other immune cells that may affect the outcome of NKT cell-based immunotherapy. Methods. NKT cells and NKT cell subpopulations (CD4(+)CD8(-), CD4(-)CD8(+), CD4(-)CD8(+)) were cocultured with PBMC and their activities on immune cells including CD4(+) and CD8(+) T cells, NK cells, and B cells were assessed by flow cytometry. The production of cytokines in culture was measured by enzyme-linked immunsorbent assay. Results. The CD4(+)CD8(-) NKT cells demonstrated substantially greater stimulatory activities on CD4(+) T cells, NK cells, and B cells than other NKT cell subsets. The CD4(-)CD8(+) NKT cells showed the greatest activity on CD8(+) T cells, and were the only NKT cell subset that activated these immune cells. The CD4(-)CD8(-) NKT cells showed moderate stimulatory activity on CD4(+) T cells and the least activity on other immune cells. Conclusion. The results here suggest that NKT cell subpopulations differ in their abilities to stimulate other immune cells. This highlights the potential importance of manipulating specific NKT cell subpopulations for particular therapeutic situations and of evaluating subpopulations, rather than NKT cells as a group, during investigation of a possible role of NKT cells in various disease settings. (c) 2006 International Society for Experimental Hematology. Published by Elsevier Inc.