90 resultados para Neuron count

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dermatoglyphic measures are of interest to schizophrenia research because they serve as persistent markers of deviant development in foetal life. Several studies have reported alterations in A–B ridge counts, total finger ridge counts and measures related to asymmetry in schizophrenia. The aim of this study was to assess these measures in an Australian catchment area, case-control study. Individuals with psychosisŽns246.were drawn from a catchment-area prevalence study, and well controlsŽns229. were recruited from the same area. Finger and palm prints were taken usingan inkless technique and all dermatoglyphic measures were assessed by a trained rater blind to case status. The dermatoglyphic measures Žfinger ridge count, A–B ridge count, and their derived asymmetry measures. were divided into quartiles based on the distribution of these variables in controls. The main analysis Žlogistic regression controlled for age and sex.examined all psychotic disorders, with planned subgroup analyses comparing controls with Ž1. nonaffective psychosis Žschizophrenia, delusional disorder, schizophreniform psychosis, atypical psychosis.andŽ2. affective psychosis Ždepression with psychosis, bipolar disorder, schizoaffective psychosis.. There were no statistically significant alterations in the odds of havinga psychotic disorder for any of the dermatoglyphic measures. The results did not change when we examined affective and nonaffective psychosis separately. The dermatoglyphic features that distinguish schizophreniar psychosis in other studies were not identified in this Australian study. Regional variations in these findings may provide clues to differential ethnicrgenetic and environmental factors that are associated with schizophrenia. The Stanley Foundation supported this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously showed that 16-day-old rats exposed to a relatively high dose of ethanol at 10-15 postnatal days of age have fewer neurons in the hilus region of the hippocampus compared with controls. Dentate gyrus granule cell numbers, however, showed no statistically significant changes attributable to the ethanol treatment. It is possible that some of the changes in brain morphology, brought about as a result of the exposure to ethanol during early life, may not be manifested until later in life. This question has been further addressed in an extension to our previous study. Wistar rats were exposed to a relatively high daily dose of ethanol on postnatal days 10-15 by placement in a chamber containing ethanol vapour, for 3 h/day. The blood ethanol concentration was found to be similar to430 mg/dl at the end of the period of exposure. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anaesthetised and killed either at 16 or 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle and the physical disector methods were used to estimate, respectively, the regional volumes and neuron cell numerical densities in the hilus and granule cell regions of the dentate gyrus. The total numbers of neurons in the hilus region and granule cell layer were computed from these estimates. It was found that 16-day-old animals had 398,000-441,000 granule cells, irrespective of group. The numbers of granule cells increased such that by 30 days of age, rats had 487,000-525,500 granule cells. However, there were no significant differences between ethanol-treated rats and their age-matched controls in granule cell numbers. In contrast, ethanol-treated rats had slightly but significantly fewer neurons in the hilus region than did control animals at 16 days of age, but not at 30 days of age. Therefore, it appears that a short period of ethanol exposure during early life can have effects on neuron numbers of some hippocampal neurons, but not others. The effects on hilar neuron numbers, observed as a result of such short periods of ethanol treatment, appeared to be transitory. (C) 2003 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mortality of first instars is generally very high, but variable, and is caused by many factors, including physical and chemical plant characters, weather and natural enemies. Here, a summary of detailed field-based studies of the early-stage survival of a specialist lepidopteran herbivore is presented. First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species, and was related to the amount of latex produced, as well as other plant characters, such as leaf hairs, microclimate and concentration of secondary metabolites. Even for a so-called 'milkweed specialist', larval performance and survival appears to be related to the concentration of cardenolides produced by the plants (a potential chemical defence against herbivory). This case study of monarchs and milkweeds highlights the need for field-based experiments to assess the effect of plant characters on the usually poor survival of early instar phytophagous insects. Few similar studies concerning the performance and survival of first-instar, eucalypt-specific herbivores have been conducted, but this type of study is considered essential based on the findings obtained using D. plexippus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroantennogram method was used to investigate the number of distinct olfactory receptor neuron types responding to a range of behaviorally active volatile chemicals in gravid Queensland fruit flies, Bactrocera tryoni. Three receptor neuron types were identified. One type responds to methyl butyrate, 2-butanone, farnesene, and carbon dioxide; a second to ethanol; and a third to n-butyric acid and ammonia. The receptor neuron type responding to methyl butyrate, 2-butanone, farnesene, and carbon dioxide consists of three subtypes. The presence of a limited number of receptor neuron types responding to a diverse set of chemicals and the reception of carbon dioxide by a receptor neuron type that responds to other odorants are novel aspects of the peripheral olfactory discrimination process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each abdominal hemisegment of the Drosophila embryo has two sensory neurons intimately associated with a tracheal branch. During embryogenesis, the axons of these sensory neurons, termed the v'td2 neurons, enter the CNS and grow toward the brain with a distinctive pathway change in the third thoracic neuromere. We show that the axons use guidance cues that are under control of the bithorax gene complex (BX-C). Pathway defects in mutants suggest that a drop in Ultrabithorax expression permits the pathway change in the T3 neuromere, while combined Ultrabithorax and abdominal-A expression represses it in the abdominal neuromeres. We propose that the axons do not respond to a particular segmental identity in forming the pathway change; rather they respond to pathfinding cues that come about as a result of a drop in BX-C expression along the antero-posterior axis of the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undemutrition during early life is known to cause deficits and distortions of brain structure although it has remained uncertain whether or not this includes a diminution of the total numbers of neurons. Estimates of numerical density (e.g. number of cells per microscopic field, or number of cells per unit area of section, or number of cells per unit volume of tissue) are extremely difficult to interpret and do not provide estimates of total numbers of cells. However, advances in stereological techniques have made it possible to obtain unbiased estimates of total numbers of cells in well defined biological structures. These methods have been utilised in studies to determine the effects of varying periods of undernutrition during early life on the numbers of neurons in various regions of the rat brain. The regions examined so far have included the cerebellum, the dentate gyrus, the olfactory bulbs and the cerebral cortex. The only region to show, unequivocally, that a period of undernutrition during early life causes a deficit in the number of neurons was the dentate gyrus. These findings are discussed in the context of other morphological and functional deficits present in undernourished animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have revealed marked regional variation in pyramidal cell morphology in primate cortex. In particular, pyramidal cells in human and macaque prefrontal cortex (PFC) are considerably more spinous than those in other cortical regions. PFC pyramidal cells in the New World marmoset monkey, however, are less spinous than those in man and macaques. Taken together, these data suggest that the pyramidal cell has become more branched and more spinous during the evolution of PFC in only some primate lineages. This specialization may be of fundamental importance in determining the cognitive styles of the different species. However, these data are preliminary, with only one New World and two Old World species having been studied. Moreover, the marmoset data were obtained from different cases. In the present study we investigated PFC pyramidal cells in another New World monkey, the owl monkey, to extend the basis for comparison. As in the New World marmoset monkey, prefrontal pyramidal cells in owl monkeys have relatively few spines. These species differences appear to reflect variation in the extent to which PFC circuitry has become specialized during evolution. Highly complex pyramidal cells in PFC appear not to have been a feature of a common prosimian ancestor, but have evolved with the dramatic expansion of PFC in some anthropoid lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platelet count is a highly heritable trait with genetic factors responsible for around 80% of the phenotypic variance. We measured platelet count longitudinally in 327 monozygotic and 418 dizygotic twin pairs at 12, 14 and 16 years of age. We also performed a genome-wide linkage scan of these twins and their families in an attempt to localize QTLs that influenced variation in platelet concentrations. Suggestive linkage was observed on chromosome 19q13.13-19q13.31 at 12 (LOD=2.12, P=0.0009), 14 (LOD=2.23, P=0.0007) and 16 (LOD=1.01, P=0.016) years of age and multivariate analysis of counts at all three ages increased the LOD to 2.59 (P=0.0003). A possible candidate in this region is the gene for glycoprotein VI, a receptor involved in platelet aggregation. Smaller linkage peaks were also seen at 2p, 5p, 5q, 10p and 15q. There was little evidence for linkage to the chromosomal regions containing the genes for thrombopoietin (3q27) and the thrombopoietin receptor (1q34), suggesting that polymorphisms in these genes do not contribute substantially to variation in platelet count between healthy individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Eosinophils are granulocytic white blood cells implicated in asthma and atopic disease. The degree of eosinophilia in the blood of patients with asthma correlates with the severity of asthmatic symptoms. Quantitative trait loci (QTL) linkage analysis of eosinophil count may be a more powerful strategy of mapping genes involved in asthma than linkage analysis using affected relative pairs. 1 Objective: To identify QTLs responsible for variation in eosinophil count in adolescent twins. Methods: We measured eosinophil count longitudinally in 738 pairs of twins at 12, 14, and 16 years of age. We typed 757 highly polymorphic microsatellite markers at an average spacing of similar to5 centimorgans across the genome. We then used multipoint variance components linkage analysis to test for linkage between marker loci and eosinophil concentrations at each age across the genome. Results: We found highly significant linkage on chromosome 2q33 in 12-year-old twins (logarithm of the odds = 4.6; P = .000002) and suggestive evidence of linkage in the same region in 14-year-olds (logarithm of the odds = 1.0; P = .016). We also found suggestive evidence of linkage at other areas of the genome, including regions on chromosomes 2, 3, 4, 8, 9, 11, 12, 17, 20, and 22. Conclusion: A QTL for eosinophil count is present on chromosome 2q33. This QTL might represent a gene involved in asthma pathophysiology.