13 resultados para Net heat gain and surface temprature
em University of Queensland eSpace - Australia
Resumo:
Objectives. This study examined the depth of cure and surface microhardness of Filtek Z250 composite resin (3M-Espe) (shades B1, A3, and C4) when cured with three commercially available tight emitting diode (LED) curing lights [E-light (GC), Elipar Freelight (3M-ESPE), 475H (RF Lab Systems)], compared with a high intensity quartz tungsten halogen (HQTH) light (Kerr Demetron Optilux 501) and a conventional quartz tungsten halogen (QTH) lamp (Sirona S1 dental unit). Methods. The effects of light source and resin shade were evaluated as independent variables. Depth of cure after 40 s of exposure was determined using the ISO 4049:2000 method, and Vickers hardness determined at 1.0 mm intervals. Results. HQTH and QTH lamps gave the greatest depth of cure. The three LED lights showed similar performances across all parameters, and each unit exceeded the ISO standard for depth of cure except GC ELight for shade B1. In terms of shade, LED lights gave greater curing depths with A3 shade, while QTH and HQTH tights gave greater curing depths with C4 shade. Hardness at the resin surface was not significantly different between LED and conventional curing lights, however, below the surface, hardness reduced more rapidly for the LED lights, especially at depths beyond 3 mm. Significance. Since the performance of the three LED lights meets the ISO standard for depth of cure, these systems appear suitable for routine clinical application for resin curing. (C) 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N-2 adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
The properties of commercial directly and indirectly heated UHT milks, both after heating and during storage at room temperature for 24 weeks, were studied. Thermally induced changes were examined by changes in lactulose, furosine and acid-soluble whey proteins. The results confirmed previous reports that directly heated UHT milks suffer less heat damage than indirectly heated milk. During storage, furosine increased and bovine serum albumin in directly heat-treated milks decreased significantly. The changes in lactulose, alpha-lactalbumin and beta-lactoglobulin were not statistically significant. The data suggest that heat treatment indicators should be measured as soon as possible after processing to avoid any misinterpretations of the intensity of the heat treatment.
Resumo:
In this study tetraploid Marsupenaeus japonicus (Bate) embryos were produced by preventing the first division in mitosis. The effectiveness of temperature and chemical shocks for producing tetraploid M. japonicus were assessed when applied at different times postspawning and for different durations. Tetraploid M. japonicus embryos (spawned at 27 degrees C) were produced by heat shocks at 35 degrees C and 36 degrees C in three and eight spawning samples respectively, and a cold shock at 5 degrees C in a single spawning sample. All temperature shocks inducing tetraploidy were applied 18-23 min postspawning for a 5-10 min duration. The percentage of spawnings successfully inducing tetraploid embryos (i.e., frequency of induction) ranged from 33.33% to 66.67% for the 21, 22 and 23 min postspawning heat shock treatment regimes. The percentage of tetraploid embryos within an induction (i.e., induction rate), as determined by flow cytometry, ranged from 8.82% to 98.12% (ave. S.E.) (34.4 +/- 21.4%) for the 35 degrees C shock treatments, from 13.12% to 61.02% (35.0 +/- 5.0%) for the 36 degrees C shock treatments and was 15% for the 5 degrees C cold shock treatment. No tetraploids were produced for spawnings that received heat shocks above 36 degrees C or below 35 degrees C, or for cold shocks above 5 degrees C for any of the tested postspawning treatment and duration times. Chemical shock with 150 mu M 6-dimethylaminopurine did not result in tetraploid M. japonicus embryos at any of the tested postspawning treatment times and durations. Tetraploid M. japonicus embryos were nonviable, with no tetraploid larvae being detected by flow cytometry. Based on our results heat shocking of M. japonicus embryos at 36 degrees C, 23 min postspawning for a 5-10 min duration is the most effective means to produce tetraploids through inhibition of the first mitotic division (taking into consideration the importance of frequency and induction rate equally).
Resumo:
To evaluate an investment project in the competitive electricity market, there are several key factors that affects the project's value: the present value that the project could bring to investor, the possible future course of actions that investor has and the project's management flexibility. The traditional net present value (NPV) criteria has the ability to capture the present value of the project's future cash flow, but it fails to assess the value brought by market uncertainty and management flexibility. By contrast with NPV, the real options approach (ROA) method has the advantage to combining the uncertainty and flexibility in evaluation process. In this paper, a framework for using ROA to evaluate the generation investment opportunity has been proposed. By given a detailed case study, the proposed framework is compared with NPV and showing a different results
Resumo:
The published requirements for accurate measurement of heat transfer at the interface between two bodies have been reviewed. A strategy for reliable measurement has been established, based on the depth of the temperature sensors in the medium, on the inverse method parameters and on the time response of the sensors. Sources of both deterministic and stochastic errors have been investigated and a method to evaluate them has been proposed, with the help of a normalisation technique. The key normalisation variables are the duration of the heat input and the maximum heat flux density. An example of application of this technique in the field of high pressure die casting is demonstrated. The normalisation study, coupled with previous determination of the heat input duration, makes it possible to determine the optimum location for the sensors, along with an acceptable sampling rate and the thermocouples critical response-time (as well as eventual filter characteristics). Results from the gauge are used to assess the suitability of the initial design choices. In particular the unavoidable response time of the thermocouples is estimated by comparison with the normalised simulation. (c) 2006 Elsevier Ltd. All rights reserved.