4 resultados para Nephrogenesis
em University of Queensland eSpace - Australia
Resumo:
We have performed a systematic temporal and spatial expression profiling of the developing mouse kidney using Compugen long-oligonucleotide microarrays. The activity of 18,000 genes was monitored at 24-h intervals from 10.5-day-postcoitum (dpc) metanephric mesenchyme (MM) through to neonatal kidney, and a cohort of 3,600 dynamically expressed genes was identified. Early metanephric development was further surveyed by directly comparing RNA from 10.5 vs. 11.5 vs. 13.5dpc kidneys. These data showed high concordance with the previously published dynamic profile of rat kidney development (Stuart RO, Bush KT, and Nigam SK. Proc Natl Acad Sci USA 98: 5649-5654, 2001) and our own temporal data. Cluster analyses were used to identify gene ontological terms, functional annotations, and pathways associated with temporal expression profiles. Genetic network analysis was also used to identify biological networks that have maximal transcriptional activity during early metanephric development, highlighting the involvement of proliferation and differentiation. Differential gene expression was validated using whole mount and section in situ hybridization of staged embryonic kidneys. Two spatial profiling experiments were also undertaken. MM (10.5dpc) was compared with adjacent intermediate mesenchyme to further define metanephric commitment. To define the genes involved in branching and in the induction of nephrogenesis, expression profiling was performed on ureteric bud (GFP+) FACS sorted from HoxB7-GFP transgenic mice at 15.5dpc vs. the GFP- mesenchymal derivatives. Comparisons between temporal and spatial data enhanced the ability to predict function for genes and networks. This study provides the most comprehensive temporal and spatial survey of kidney development to date, and the compilation of these transcriptional surveys provides important insights into metanephric development that can now be functionally tested.
Resumo:
The total number of nephrons in normal human kidneys varies over a 10-fold range. This variation in total nephron number leads us to question whether low nephron number increases the risk of renal disease in adulthood. This review considers the available evidence in humans linking low nephron number/reduced nephron endowment and the susceptibility to renal disease. Total nephron number in humans has been directly correlated with birth weight and inversely correlated with age, mean glomerular volume, and hypertension. Low nephron number may be the result of suboptimal nephrogenesis during kidney development and/or loss of nephrons once nephrogenesis has been completed. Low nephron number is frequently, but not always, associated with hypertrophy of remaining glomeruli. This compensatory hypertrophy has also been associated with a greater susceptibility for kidney disease. Three human studies have reported reduced nelphron number in subjects with a history of hypertension. This correlation has been observed in White Europeans, White Americans (but not African Americans) and Australian Aborigines. Studies in additional populations are required, as well as a greater understanding of the fetal environmental and genetic determinants of low nephron number.
Resumo:
The transcription factor PAX2 is expressed during normal kidney development and is thought to influence outgrowth and branching of the ureteric bud. Mice with homozygous null Pax2 mutations have developmental defects of the midbrain-hindbrain region, optic nerve, and ear and are anephric. During nephrogenesis, PAX2 is also expressed by mesenchymal cells as they cluster and reorganize to form proximal elements of each nephron, but the function of PAX2 in these cells is unknown. In this study we hypothesized that PAX2 activates expression of WNT4, a secreted glycoprotein known to be critical for successful nephrogenesis. PAX2 protein was identified in distal portions of the S-shaped body, and the protein persists in the emerging proximal tubules of murine fetal kidney. PAX2 activated WNT4 promoter activity 5-fold in co-transfection assays with JTC12 cells derived from the proximal tubule. Inspection of the 5'-flanking sequence of the human WNT4 gene identified three novel PAX2 recognition motifs; each exhibited specific PAX2 protein binding in electromobility shift assays. Two motifs were contained within a completely duplicated 0.66-kb cassette. Transfection of JTC12 cells with a PAX2 expression vector was associated with a 7-fold increase in endogenous WNT4 mRNA. In contrast, Wnt4 mRNA was decreased by 60% in mesenchymal cell condensates of fetal kidney from mice with a heterozygous Pax2 mutation. We speculated that a key function of PAX2 is to activate WNT4 gene expression in metanephric mesenchymal cells as they differentiate to form elements of the renal tubules.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.