11 resultados para Nearshore Regions of Goa

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective-To investigate in vitro transdermal absorption of fentanyl from patches through skin samples obtained from various anatomic regions of dogs. Sample Population-Skin samples from 5 Greyhounds. Procedure-Skin samples from the dogs' thoracic, neck, and groin regions were collected postmortem and frozen. After samples were thawed, circular sections were cut and placed in Franz-type diffusion cells in a water bath (32degreesC). A commercial fentanyl patch, attached to an acetate strip with a circular hole, was applied to each skin sample. Cellulose strips were used as control membranes. Samples of receptor fluid in the diffusion cells were collected at intervals for 48 hours, and fentanyl concentrations were analyzed by use of high-performance liquid chromatography. Results-Mean +/- SD release rate of fentanyl from the patch, defined by its absorption rate through the non-rate-limiting cellulose membrane, was linear during the first 8 hours (2.01 +/- 0.05 pg/cm(2) of cellulose membrane/h) and then decreased. Fentanyl passed through skin from the groin region at a faster rate and with a significantly shorter lag time, compared with findings in neck or thoracic skin samples. Conclusions and Clinical Relevance-In vitro, fentanyl from a patch was absorbed more quickly and to a greater extent through skin collected from the groin region of dogs, compared with skin samples from the thoracic and neck regions. Placement of fentanyl patches in the groin region of dogs may decrease the lag time to achieve analgesia perioperatively; however, in vivo studies are necessary to confirm these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CpG island is a GC-rich motif occurred in gene promoter region, which can play important roles in gene silencing and imprinting. Here, we present a set of discriminant functions that can recognize the structural and compositional features of CpG islands in the putative promoter regions (PPRs) of human and mouse immunoglobulin (Ig) genes. We showed that the PPRs of both human and mouse Ig genes irrespective of gene chromosomal localization are apparently CpG island poor, with a low percentage of the CpG islands overlapped with the transcription start site (TSS). The human Ig genes that have CpG islands in the PPRs show a very narrow range of CpG densities. 47% of the Ig genes fall in the range of 3.5-4 CpGs/100 bp. In contrast, the non-Ig genes examined have a wide range of the density of CpG island, with 10.5% having the density of 8.1-15 CpGs/100 bp. Meantime, five patterns of the CpG distributions within the CpG islands have been classified: Pat A, B, C, D, and E. 21.6% and 10.8% of the Ig genes fall into the Pat B and Pat D groups, respectively, which were significantly higher than the non-Ig genes examined (8.2% and 3.8%). Moreover, the length of CpG islands is shorter in human Ig genes than in non-Ig genes but is much longer than in mouse orthologues. These findings provide a clear picture of non-neutral and nonrandom occurrence of the CpG islands in the PPRs of human and mouse Ig genes, which facilitate rational recommendations regarding their nomenclature. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the abdominal muscles in trunk rotation is not comprehensively understood. This study investigated the electromyographic (EMG) activity of anatomically distinct regions of the abdominal muscles during trunk rotation in six subjects with no history of spinal pain. Fine-wire electrodes were inserted into the right abdominal wall; upper region of transversus abdominis (TrA), middle region of TrA, obliquus internus abdominis (OI) and obliquus externus abdominis (OE), and lower region of TrA and OI. Surface electrodes were placed over right rectus abdominis (RA). Subjects performed trunk rotation to the left and right in sitting by rotating their pelvis relative to a fixed thorax. EMG activity was recorded in relaxed supine and sitting, and during an isometric hold at end range. TrA was consistently active during trunk rotation, with the recruitment patterns of the upper fascicles opposite to that of the middle and lower fascicles. During left rotation, there was greater activity of the lower and middle regions of contralateral TrA and the lower region of contralateral OI. The upper region of ipsilateral TrA and OE were predominately active during right rotation. In contrast, there was no difference in activity of RA and middle OI between directions (although middle OI was different between directions for all but one subject). This study indicates that TrA is active during trunk rotation, but this activity varies between muscle regions. These normative data will assist in understanding the role of TrA in lumbopelvic control and movement, and the effect of spinal pain on abdominal muscle recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The abdominal muscles have an important role in control and movement of the lumbar spine and pelvis. Given there is new evidence of morphological and functional differences between distinct anatomical regions of the abdominal muscles, this study investigated whether there are regional differences in postural activity of these muscles and whether recruitment varies between different body positions. Eleven subjects with no history of low back pain that affected function or for which they sought treatment participated in the study. Electromyographic (EMG) activity of the upper, middle and lower regions of transversus abdominis (TrA), the middle and lower regions of obliquus internus abdominis (OI) and the middle region of obliquus externus abdominis (OE) was recorded using intramuscular electrodes. All subjects performed rapid, unilateral shoulder flexion in standing and six subjects also moved their upper limb in sitting. There were regional differences in the postural responses of TrA with limb movement. Notably, the onset of EMG of the upper region was later than that of the lower and middle regions. There were no differences in the EMG onsets of lower and middle TrA or OI. The postural responses of the abdominal muscles were also found to differ between body positions, with recruitment delayed in sitting compared to standing. This study showed that there is regional differentiation in TrA activity with challenges to postural control and that body position influences the postural responses of the abdominal muscles. These results may reflect variation in the contribution of abdominal muscle regions to stability of the trunk. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mesocorticolimbic system is the reward centre of the brain and the major target for drugs of abuse including alcohol. Neuroadaptive changes in this region are thought to underlie the process of tolerance and dependence. Recently, several research groups have searched for alcohol-responsive genes using high-throughput microarrays and well-characterized human post-mortem material. Comparison of data from these studies of cortical regions highlights the differences in experimental approach and selection of cases. However, alcohol-responsive gene sets associated with transcription, oxidative stress and energy production were common to these studies. In marked contrast, alcohol-responsive genes in the nucleus accumbens and the ventral tegmental area are primarily associated with changes in neurotransmission and signal transduction. These data support the concept that, within cortical regions, changes in gene expression are associated with alcoholism-related pathology. In the dopaminergic tract of the mesocorticolimbic system, alcohol-responsive gene sets suggest long-term neuroplastic changes in synaptic transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies examining dual adaptation to opposing novel environments have yielded contradictory results, with previous evidence supporting both successful dual adaptation and interference leading to poorer adaptive performance. Whether or not interference is observed during dual adaptation appears to be dependent on the method used to allow the performer of the task to distinguish between two novel environments. This experiment tested if colour cues, a separation in workspace, and presentation schedule, could be used to distinguish between two opposing visuomotor rotations and enable dual adaptation. Through the use of a purpose designed manipulandum, each visuomotor rotation was either presented in the same region of workspace and associated with colour cues (Group 1), different regions of workspace in addition to colour cues (Groups 2 and 3) or different regions of workspace only (Groups 4 and 5). We also assessed the effectiveness of the workspace separation with both randomised and alternating presentation schedules (Groups 4 and 5). The results indicated that colour cues were not effective at enabling dual adaptation when each of the visuomotor rotations was associated with the same region of workspace. When associated with different regions of workspace, however, dual adaptation to the opposing rotations was successful regardless of whether colour cues were present or the type of presentation schedule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonate sediments are dynamic three-dimensional environments where the surface layers are constantly moving and mixing due to the energy of the water column. It is also an environment of dynamic biological, chemical and physical interaction and modification. The biological community can actively influence changes to sediment characteristics and associated biochemistry. Bioturbation resulting from macrofaunal activity disrupts sediment structure and biochemical arrangements and reduces the critical shear forces required to move sediment particles, adding to the dynamic and complex physical and biogeochemical nature of the sediment. Laboratory studies using both planner optodes and glass needle microsensors were used to measure abiotic sediment characteristics such as the depth distribution and concentrations of PAR. The biochemical nature of coral reef sediment were also investigated, specifically the quantification and the distribution of dissolved oxygen within coarse and fine-grained sediments under regimes of light and darkness. Results highlighted the significant contribution microalgal productivity and bioturbation has on distribution of dissolved oxygen in the upper sediment layers. On the reef flat a shallow water lander system was employed to measure concentrations of O2, pH, S, Ca and temperature over periods of 24 to 48 hours in coarse and fine-grained sediments. Similarities between laboratory and in situ results where evident, however the in situ environment was more dynamic and the distribution and concentrations of dissolved oxygen were more complex and correlated to irradiance, temperature and biological activity. Microsensor technology provides us with the opportunity to study, at very high resolutions, the upper irradiated; photosynthetically active regions of aquatic sediments along with anoxic processes deeper in sub-euphotic regions of the sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves. (C) 2003 Elsevier Science B.V. All rights reserved.