27 resultados para NUCLEOTIDE EXCISION-REPAIR
em University of Queensland eSpace - Australia
Resumo:
Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.
Resumo:
To study the dynamics of protein recruitment to DNA lesions, ion beams can be used to generate extremely localized DNA damage within restricted regions of the nuclei. This inhomogeneous spatial distribution of lesions can be visualized indirectly and rapidly in the form of radiation-induced foci using immunocytochemical detection or GFP-tagged DNA repair proteins. To analyze faster protein translocations and a possible contribution of radiation-induced chromatin movement in DNA damage recognition in live cells, we developed a remote-controlled system to obtain high-resolution fluorescence images of living cells during ion irradiation with a frame rate of the order of seconds. Using scratch replication labeling, only minor chromatin movement at sites of ion traversal was observed within the first few minutes of impact. Furthermore, time-lapse images of the GFP-coupled DNA repair protein aprataxin revealed accumulations within seconds at sites of ion hits, indicating a very fast recruitment to damaged sites. Repositioning of the irradiated cells after fixation allowed the comparison of live cell observation with immunocytochemical staining and retrospective etching of ion tracks. These results demonstrate that heavy-ion radiation-induced changes in sub-nuclear structures can be used to determine the kinetics of early protein recruitment in living cells and that the changes are not dependent on large-scale chromatin movement at short times postirradiation. © 2005 by Radiation Research Society.
Resumo:
In order to study the effect of arsenic on DNA damage, Sprague-Dawley rats were dosed with sodium arsenite (10 mg/kg) with or without 800 mug of benzo(a)pyrene (BP) by intramammilary injection. The animals were sacrificed on day 1, 3, 5, 10 and 27 and the mammary gland tissues were collected for DNA adduct measurement using a P-32 post-labeling assay. Animals dosed with arsenic alone did not show any DNA adducts. DNA adduct levels in rats dosed with BP alone reached a maximum level by day 5, reducing to 13% of this level by day 27. Adduct levels in rats dosed with arsenic and BP also reached a maximum by day 5 but only 80% of the level observed in the BP group. However, 84% of this amount still remained by day 27. The First Nucleotide Change (FNC) technique was used for the screening of 115 samples of various tissues from mice that had been chronically exposed to sodium arsenate for over 2 years revealed that inorganic arsenic did not attack the two putative hotspots (codons 131 and 154) of the hOGG1 gene. These results support the hypothesis that arsenic exerts its biological activity through DNA repair inhibition. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Type I diabetes is thought to occur as a result of the loss of insulin-producing pancreatic beta cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the beta cells, is used to trigger the initial cell death. High single doses of STZ cause extensive beta -cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), beta -cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in A-PNG(-/-) islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the beta cells of APNG(-/-) mice. Apoptosis was not observed in PARP-inhibited APNG(+/+) mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG(-/-) mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of beta -cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG(-/-) and APNG(-/-) mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG(-/-) mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.
Resumo:
Ataxia-oculomotor apraxia (AOA1) is a neurological disorder with symptoms that overlap those of ataxia-telangiectasia, a syndrome characterized by abnormal responses to double-strand DNA breaks and genome instability. The gene mutated in AOA1, APTX, is predicted to code for a protein called aprataxin that contains domains of homology with proteins involved in DNA damage signalling and repair. We demonstrate that aprataxin is a nuclear protein, present in both the nucleoplasm and the nucleolus. Mutations in the APTX gene destabilize the aprataxin protein, and fusion constructs of enhanced green fluorescent protein and aprataxin, representing deletions of putative functional domains, generate highly unstable products. Cells from AOA1 patients are characterized by enhanced sensitivity to agents that cause single-strand breaks in DNA but there is no evidence for a gross defect in single-strand break repair. Sensitivity to hydrogen peroxide and the resulting genome instability are corrected by transfection with full-length aprataxin cDNA. We also demonstrate that aprataxin interacts with the repair proteins XRCC1, PARP-1 and p53 and that it co-localizes with XRCC1 along charged particle tracks on chromatin. These results demonstrate that aprataxin influences the cellular response to genotoxic stress very likely by its capacity to interact with a number of proteins involved in DNA repair.
Resumo:
RAD51 colocalizes with both BRCA1 and BRCA2, and genetic variants in RAD51 would be candidate BRCA1/2 modifiers. We searched for RAD51 polymorphisms by sequencing 20 individuals. We compared the polymorphism allele frequencies between female BRCA1/2 mutation carriers with and without breast or ovarian cancer and between population-based ovarian cancer cases with BRCA1/2 mutations to cases and controls without mutations. We discovered two single nucleotide polymorphisms (SNPs) at positions 135 g-->c and 172 g-->t of the 5' untranslated region. In an initial group of BRCA1/2 mutation carriers, 14 (21%) of 67 breast cancer cases carried a c allele at RAD51:135 g-->c, whereas 8 (7%) of 119 women without breast cancer carried this allele. In a second set of 466 mutation carriers from three centers, the association of RAD51:135 g-->c with breast cancer risk was not confirmed. Analyses restricted to the 216 BRCA2 mutation carriers, however, showed a statistically significant association of the 135 c allele with the risk of breast cancer (adjusted odds ratio, 3.2; 95% confidence limit, 1.4-40). BRCA1/2 mutation carriers with ovarian cancer were only about one half as likely to carry the RAD51:135 g-->c SNP. Analysis of the RAD51:135 g-->c SNP in 738 subjects from an Israeli ovarian cancer case-control study was consistent with a lower risk of ovarian cancer among BRCA1/2 mutation carriers with the c allele. We have identified a RAD51 5' untranslated region SNP that may be associated with an increased risk of breast cancer and a lower risk of ovarian cancer among BRCA2 mutation carriers. The biochemical basis of this risk modifier is currently unknown.
Resumo:
Deficiencies in DNA repair have been hypothesized to increase cancer risk and excess cancer incidence is a feature of inherited diseases caused by defects in DNA damage recognition and repair. We investigated, using a case-control design, whether the double-strand break repair gene polymorphisms RAD51 5' untranslated region -135 G > C, XRCC2 R188H G > A, and XRCC3 T241M C > T were associated with risk of breast or ovarian cancer in Australian women. Sample sets included 1,456 breast cancer cases and 793 age-matched controls ages under 60 years of age, 549 incident ovarian cancer cases, and 335 controls of similar age distribution. For the total sample and the subsample of Caucasian women, there were no significant differences in genotype distribution between breast cancer cases and controls or between ovarian cancer cases and combined control groups. The crude odds ratios (OR) and 95% confidence intervals (95% CI) associated with the RAD51 GC/CC genotype frequency was OR, 1.10; 95% CI, 0.80-1.41 for breast cancer and OR, 1.22; 95% CI, 0.92-1.62 for ovarian cancer. Similarly, there were no increased risks associated with the XRCC2 GA/AA genotype (OR, 0.98; 95% CI, 0.76-1.26 for breast cancer and OR, 0.93; 95% CI, 0.69-1.25 for ovarian cancer) or the XRCC3 CT/TT genotype (OR, 0.92; 95% Cl, 0.77-1.10 for breast cancer and OR, 0.87; 95% CI, 0.71-1.08 for ovarian cancer). Results were little changed after adjustment for age and other measured risk factors. Although there was little statistical power to detect modest increases in risk for the homozygote variant genotypes, particularly for the rare RAD51 and XRCC2 variants, the data suggest that none of these variants play a major role in the etiology of breast or ovarian cancer.
Resumo:
Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We recently evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach in delineating breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.
Resumo:
Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We previously evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach to delineate breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.
Resumo:
The nifH gene sequence of the nitrogen-fixing bacterium Acetobacter diazotrophicus was determined with the use of the polymerase chain reaction and universal degenerate oligonucleotide primers. The gene shows highest pair-wise similarity to the nifH gene of Azospirillum brasilense. The phylogenetic relationships of the nifH gene sequences were compared with those inferred from 16S rRNA gene sequences. Knowledge of the sequence of the nifH gene contributes to the growing database of nifH gene sequences, and will allow the detection of Acet. diazotrophicus from environmental samples with nifH gene-based primers.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
The effects of nitric oxide (NO) and other cysteine modifying agents were examined on cyclic nucleotide-gated (CNG) cation channels from rat olfactory receptor neurons. The NO compounds, S-nitroso-cysteine (SNC) and 3-morpholino-sydnonomine (SIN-1), did not activate the channels when applied for up to 10 min. The cysteine alkylating agent, N-ethylmaleimide (NEM), and the oxidising agent, dithionitrobensoate (DTNB), were also without agonist efficacy. Neither SNC nor DTNB altered the cAMP sensitivity of the channels. However, 2-min applications of SIN-1, SNC and DTNB inhibited the cAMP-gated current to approximately 50% of the control current level. This inhibition showed no spontaneous reversal for 5 min but was completely reversed by a 2-min exposure to DTT. The presence of cAMP protected the channels against NO-induced inhibition. These results indicate that inhibition is caused by S-nitrosylation of neighboring sulfhydryl groups leading to sulfhydryl bond formation. This reaction is favored in the closed channel state. Since recombinantly expressed rat olfactory alpha and beta CNG channel homomers and alpha/beta heteromers are activated and not inhibited by cysteine modification, the results of this study imply the existence of a novel subunit or tightly bound factor which dominates the effect of cysteine modification in the native channels. As CNG channels provide a pathway for calcum influx, the results may also have important implications for the physiological role of NO in mammalian olfactory receptor neurons.
Resumo:
Polyamine-induced inward rectification of cyclic nucleotide-gated channels was studied in inside-out patches from rat olfactory neurons. The polyamines, spermine, spermidine and putrescine, induced an 'instantaneous' voltage-dependent inhibition with K-d values at 0 mV of 39, 121 mu M and 2.7 mM, respectively. Hill coefficients for inhibition were significantly < 1, suggesting an allosteric inhibitory mechanism. The Woodhull model for voltage-dependent block predicted that all 3 polyamines bound to a site 1/3 of the electrical distance through the membrane from the internal side. Instantaneous inhibition was relieved at positive potentials, implying significant polyamine permeation. Spermine also induced exponential current relaxations to a 'steady-state' impermeant level. This inhibition was also mediated by a binding site 1/3 of the electrical distance through the pore, but with a K-d of 2.6 mM. Spermine inhibition was explained by postulating two spermine binding sites at a similar depth. Occupation of the first site occurs rapidly and with high affinity, but once a spermine molecule has bound, it inhibits spermine occupation of the second binding site via electrostatic repulsion. This repulsion is overcome at higher membrane potentials, but results in a lower apparent binding affinity for the second spermine molecule. The on-rate constant for the second spermine binding saturated at a low rate (similar to 200 sec(-1) at +120 mV), providing further evidence for an allosteric mechanism. Polyamine-induced inward rectification was significant at physiological concentrations.