68 resultados para NMR symbols and terms

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde-derived oxazolidine derivatives 4-7 of the beta-adrenoreceptor antagonists metoprolol 1, atenolol 2 and timolol 3 have been synthesised. Conformational analysis of 1-3 and the oxazolidine derivatives 4-7 has been performed using H-1 NMR spectroscopy and computational methods. The H-1 NMR studies show that for the aryloxypropanolamine beta-adrenoreceptor antagonists there is a predominance of the conformer in which the amine group is approximately antiperiplanar or trans to the aryloxymethylene group. Both H-1 NMR data and theoretical studies indicate that the oxazolidine derivatives 4-7 and the aryloxypropanolamine beta-adrenoreceptor antagonists 1-3 adopt similar conformations around the beta-amino alcohol moiety. Thus, oxazolidine ring formation does not dramatically alter the preferred conformation adopted by the beta-amino alcohol moiety of 1-3. Oxazolidine derivatives of aryloxypropanolamine beta-adrenoreceptor antagonists may therefore be appropriate as prodrugs, or semi-rigid analogues, when greater lipophilicity is required for drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study represents the first application of multi-way calibration by N-PLS and multi-way curve resolution by PARAFAC to 2D diffusion-edited H-1 NMR spectra. The aim of the analysis was to evaluate the potential for quantification of lipoprotein main- and subtractions in human plasma samples. Multi-way N-PLS calibrations relating the methyl and methylene peaks of lipoprotein lipids to concentrations of the four main lipoprotein fractions as well as 11 subfractions were developed with high correlations (R = 0.75-0.98). Furthermore, a PARAFAC model with four chemically meaningful components was calculated from the 2D diffusion-edited spectra of the methylene peak of lipids. Although the four extracted PARAFAC components represent molecules of sizes that correspond to the four main fractions of lipoproteins, the corresponding concentrations of the four PARAFAC components proved not to be correlated to the reference concentrations of these four fractions in the plasma samples as determined by ultracentrifugation. These results indicate that NMR provides complementary information on the classification of lipoprotein fractions compared to ultracentrifugation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hedamycin, a member of the pluramycin class of antitumour antibiotics, consists of a planar anthrapyrantrione chromophore to which is attached two aminosugar rings at one end and a bisepoxide-containing sidechain at the other end, Binding to double-stranded DNA is known to involve both reversible and non-reversible modes of interaction. As a part of studies directed towards elucidating the structural basis for the observed 5'-pyGT-3' sequence selectivity of hedamycin, we conducted one-dimensional NMR titration experiments at low temperature using the hexadeoxyribonucleotide duplexes d(CACGTG)(2) and d(CGTACG)(2). Spectral changes which occurred during these titrations are consistent with hedamycin initially forming a reversible complex in slow exchange on the NMR timescale and binding through intercalation of the chromophore. Monitoring of this reversible complex over a period of hours revealed a second type of spectral change which corresponds with formation of a non-reversible complex. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N,N,N,N-Tetramethylammonium dicyanamide (Me(4)NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and H-1 nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (sigma = 10(-3) S cm(-2) at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, H-1 NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid-solid transitions at ambient temperatures, subsequent H-1 NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SFTI-1 is a recently discovered cyclic peptide trypsin inhibitor from sunflower seeds comprising 14 amino acid residues. It is the most potent known Bowman-Birk inhibitor and the only naturally occurring cyclic one. The solution structure of SFTI-1 has been determined by H-1-NMR spectroscopy and compared with a synthetic acyclic permutant. The solution structures of both are remarkably similar. The lowest energy structures from each family of 20 structures of cyclic and acyclic SFTI-1 have an rmsd over the backbone and heavy atoms of 0.29 Angstrom and 0.66 Angstrom, respectively. The structures consist of two short antiparallel beta -strands joined by an extended loop containing the active site at one end. Cyclic SFTI-1 also has a hairpin turn completing the cycle. Both molecules contain particularly stable arrangements of cross-linking hydrogen bonds between the beta -strands and a single disulfide bridge, making them rigid and well defined in solution. These stable arrangements allow both the cyclic and acyclic variants of SFTI-1 to inhibit trypsin with very high potencies (0.5 nM and 12.1 nM, respectively). The cyclic nature of SFTI-1 appears to have evolved to provide higher trypsin inhibition as well as higher stability. The solution structures are similar to the crystal structure of the cyclic inhibitor in complex with trypsin. The lack of a major conformational change upon binding suggests that the structure of SFTI-1 is rigid and already pre-organized for maximal binding due to minimization of entropic losses compared to a more flexible ligand. These properties make SFTI-1 an ideal platform for the design of small peptidic pharmaceuticals or pesticides. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent of swelling of cross-linked poly(dimethylsiloxane) and linear low-density poly(ethylene) in supercritical CO2 has been investigated using high-pressure NMR spectroscopy and microscopy. Poly(dimethylsiloxane) was cross-linked to four different cross-link densities and swollen in supercritical CO2. The Flory-Huggins interaction parameter, x, was found to be 0.62 at 300 bar and 45 degrees C, indicating that supercritical CO2 is a relatively poor solvent compared to toluene or benzene. Linear low-density poly(ethylene) was shown to exhibit negligible swelling upon exposure to supercritical CO2 up to 300 bar. The effect Of CO2 pressure on the amorphous region of the poly(ethylene) was investigated by observing changes in the H-1 T-2 relaxation times of the polymer. These relaxation times decreased with increasing pressure, which was attributed to a decrease in mobility of the polymer chains as a result of compressive pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

S-RNases are the stylar products of the self-incompatibility (S)-locus in solanaceous plants (including Nicotiana alata), and as such, are involved in the prevention of self-pollination. All cDNA sequences of S-RNase products of functional S-alleles contain potential N-glycosylation sites, with one site being conserved in all cases, suggesting that N-glycosylation is important in self-incompatibility. In this study, we report on the structure and localization of the N-glycans on the S-7-allele RNase of N, alata, A total of nine N-glycans, belonging to the high-mannose- and xylosylated hybrid-classes, were identified and characterized by a combination of electrospray-ionization mass-spectrometry (ESI-MS), H-1-NMR spectroscopy, and methylation analyses. The glycosylation pattern of individual glycosylation sites was determined by ESI-MS of the glycans released from isolated chymotryptic glycopeptides, All three N-glycosylation sites showed microheterogeneity and each had a unique complement of N-glycans, The N-glycosylation pattern of the S-7-RNase is significantly different to those of the S-1- and S-2-RNases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-Ray crystal structures, C-13 NMR spectra and theoretical calculations (B3LYP/6-31G*) are reported for the mesoionic (zwitterionic) pyridopyrimidinylium- and pyridooxazinyliumolates 2a, 3a and 5a,b as well as the enol ether 11b and the enamine 11c. The 1-NH compounds like 1a, 2a and 3a exist in the mesoionic form in the crystal and in solution, but the OH tautomers such as 1b and 2b dominate in the gas phase as revealed by the Ar matrix IR spectra in conjunction with DFT calculations. All data indicate that the mesoionic compounds can be regarded as intramolecular pyridine-ketene zwitterions (cf. 16 --> 17) with a high degree of positive charge on the pyridinium nitrogen, a long pyridinium N-CO bond (ca. 1.44-1.49 Angstrom), and normal C=O double bonds (ca. 1.22 Angstrom). All mesoionic compounds exhibit a pronounced tilting of the olate C=O groups (the C=O groups formally derived from a ketene) towards the pyridinium nitrogen, giving NCO angles of 110-118 degrees. Calculations reveal a hydrogen bond with 6-CH, analogous to what is found in ketene-pyridine zwitterions and the C3O2-pyridine complex. The 2-OH tautomers of type 1b, 2b, and 11 also show a high degree of zwitterionic character as indicated by the canonical structures 11 12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution conformation and calcium binding properties have been investigated for the two cyclic octapeptides cyclo(-D-Thr-D-Val(Thz)-Ile-)(2) (4) and cyclo(-Thr-Gly(Thz)-Ile-Ser-Gly(Thz)-Ile-)(5) and the results are compared to those for the cyclic octapeptides previously studied; ascidiacyclamide (1), patellamide D (2), cyclo(-Thr-D-Val(Thz)-Ile-)(2) (3), and cyclo(-Thr-D-Val-alphaAbu-Ile-)2 (6). Both 4 and 5 contain two heterocyclic thiazole ring constraints but the latter has a larger degree of flexibility as a consequence of the glycine residues within the cyclic framework. The solution conformation of 4 and 5 was determined from H-1 NMR spectra and found to be a twisted figure of eight similar to that for 2. Complexation studies using H-1 NMR and CD spectroscopy yielded 1 : 1 calcium-peptide binding constants (logK) for the two peptides (2.3 (4) and 5.7 (5)). For 5 the magnitude of the binding constant was verified by a competition titration using CD. The different calcium-binding affinities of 3 (logK = 4.0) and 4 is attributed to the stereochemistry of the threonine residue. The magnitude of the binding constant for 5 compared to 3 and 4 (all peptides containing two thiazole ring constrains) demonstrates that the increase in flexibility of the cyclic peptide has a dramatic effect on the Ca2+ binding ability. The affinity for Ca2+ thus decreases in the order (6 similar to 5 > 3 > 2 similar to 1 > 4). The number of carbonyl donors available on each peptide has only a limited effect on calcium binding. The most important factor is the flexibility, which allows for a conformation of the peptide capable of binding calcium efficiently.