4 resultados para NITROGEN-DIOXIDE
em University of Queensland eSpace - Australia
Resumo:
Background. This paper examines the short-term health effects of air pollution on daily hospital admissions in Australian cities (those considered comprise more than 50% of the Australian population) for the period 1996-99. Methods: The study used a similar protocol to overseas studies and derived single city and pooled estimates using different statistical approaches to assess the accuracy of the results. Results: There was little difference between the results derived from the different statistical approaches for cardiovascular admissions, while in those for respiratory admissions there were differences. For three of the four cities (for the other the results were positive but not significant), fine particles (measured by nephelometry - bsp) and nitrogen dioxide (NO2) have a significant impact on cardiovascular admissions (for total cardiac admissions, RR=1.0856 for a one-unit increase in bsp (10(-4). m(-1)), RR=1.0023 for a 1 ppb increase in NO2). For three of the four cities (for the other, the results were negative and significant), fine particles, NO2 and ozone have a significant impact on respiratory admissions (for total elderly respiratory admissions, RR=1.0552 per 1 unit (10(-4).m(-1)) increase in bsp, RR=1.0027 per 1ppb increase in NO2, RR=10014 per 1 ppb increase in ozone for elderly asthma and COPD admissions). In all analyses the particle and NO2 impacts appear to be related. Conclusions: Similar to overseas studies, air pollution has an impact on hospital admissions in Australian cities, but there can be significant differences between cities.
Resumo:
Nitrogen adsorption at 77 K is the current standard means for pore size determination of adsorbent materials. However, nitrogen adsorption reaches limitations when dealing with materials such as molecular sieving carbon with a high degree of ultramicroporosity. In this investigation, methane and carbon dioxide adsorption is explored as a possible alternative to the standard nitrogen probe. Methane and carbon dioxide adsorption equilibria and kinetics are measured in a commercially derived carbon molecular sieve over a range of temperatures. The pore size distribution is determined from the adsorption equilibrium, and the kinetics of adsorption is shown to be Fickian for carbon dioxide and non-Fickian for methane. The non-Fickian response is attributed to transport resistance at the pore mouth experienced by the methane molecules but not by the carbon dioxide molecules. Additionally, the change in the rate of adsorption with loading is characterized by the Darken relation in the case of carbon dioxide diffusion but is greater than that predicted by the Darken relation for methane transport. Furthermore, the proposition of inkbottle-shaped micropores in molecular sieving carbon is supported by the determination of the activation energy for the transport of methane and subsequent sizing of the pore-mouth barrier by molecular potential calculations.
Resumo:
In this paper, we study the effect of solid surface mediation on the intermolecular potential energy of nitrogen, and its impact on the adsorption of nitrogen on a graphitized carbon black surface and in carbon slit-shaped pores. This effect arises from the lower effective interaction potential energy between two particles close to the surface compared to the potential energy of the same two particles when they are far away from the surface. A simple equation is proposed to calculate the reduction factor and this is used in the Grand Canonical Monte Carlo (GCMC) simulation of nitrogen adsorption on graphitized thermal carbon black. With this modification, the GCMC simulation results agree extremely well with the experimental data over a wide range of pressure; the simulation results with the original potential energy (i.e. no surface mediation) give rise to a shoulder in the neighbourhood of monolayer coverage and a significant over-prediction of the second and higher layer coverages. The influence of this surface mediation on the dependence of the pore-filling pressure on the pore width is also studied. It is shown that such surface mediation has a significant effect on the pore-filling pressure. This implies that the use of the local isotherms obtained from the potential model without surface mediation could give rise to a serious error in the determination of the pore-size distribution.
Resumo:
In this paper, we study the surface heterogeneity and the surface mediation on the intermolecular potential energy for nitrogen adsorption on graphitized thermal carbon black (GTCB). The surface heterogeneity is modeled as the random distribution of effective carbonyl functional groups on the graphite surface. The molecular parameters and the discrete charges of this carbonyl group are taken from Jorgensen, et al. (J. Am. Chem. Soc., (1984) 106, 6638) while those for nitrogen (dispersive parameters and discrete charges) are taken from Murthy et al. (Mol. Phys., (1983) 50, 531) in our Grand Canonical Monte Carlo (GCMC) simulation. The solid surface mediation in the reduction of intermolecular potential energy between two fluid molecules was taken from a recent work by Do et al. (Langmuir, (2004) 20, 7623). Our simulation results accounting for the surface heterogeneity and surface mediation on intermolecular potential energy were compared with the experimental data of nitrogen at 77 and 90 K. The solid-fluid dispersive parameters are determined from the Lorentz-Berthelot (LB) rule. The fraction of the graphite surface covered with carbonyl functional groups was then derived from the consideration of the Henry constant, and for the data of Kruk et al. (Langmuir, (1999) 15, 1435) we have found that 1% of their GTCB surface is covered with effective carbonyl functional groups. The damping constant, due to surface mediation, was determined from the consideration of the portion of the adsorption isotherm where the first layer is being completed, and it was found to take a value of 0.0075. With these parameters, we have found that the GCMC simulation results describe the data over the complete range of pressure substantially better than any other MC models in the literature. The implication of this work is demonstrated with local adsorption isotherms of 10 and 20 A slit pores. One was obtained without allowance for surface mediation, while the other correctly accounts for these factors. The two local isotherms differ substantially, and the implication is that if we used incorrect local isotherms (i.e. without the surface mediation) the pore size distribution would be incorrectly derived.