100 resultados para NICKEL-PHOSPHIDE CATALYSTS
em University of Queensland eSpace - Australia
Resumo:
The catalytic activities of Ni/gamma-Al2O3 catalysts prepared using different nickel precursor compounds were studied for the reaction of methane reforming with CO2. It is found that the nickel precursor employed in the catalyst preparation plays an important role. The catalyst based on nickel nitrate exhibited higher catalytic activity and stability over a 24-h test period than the other two catalysts derived from nickel chloride and nickel acetylacetonate. A comprehensive characterisation of the catalysts showed that the weak interaction between Ni particles and gamma-Al2O3 resulted in more active sites on Ni nitrate-derived Ni/gamma-Al2O3 catalyst. Coking studies showed that carbon deposition on Ni catalysts derived from inorganic precursors (nitrate and chloride) were more severe than on the organic precursor-derived catalyst. However, the Ni nitrate-derived catalyst was found to have the highest stability (or lowest deactivation rate) mainly due to the active carbon species (-C-C-) of the resulting graphitic structure and their close contact with the metal particles. In contrast, the carbon formed on Ni-AA catalyst (from Ni acetylacetonate) is dominated by inactive -CO-C- species, thus leading to a rapid accumulation of carbon in this catalyst and more severe deactivation. (C) 1998 Elsevier Science B.V.
Resumo:
Naturally occurring clays and pillared clays are used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of the supports and catalysts are systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD) techniques. It is found that the pore structures and surface properties of supports greatly affect the catalytic activities of the catalysts prepared. The catalysts supported on the mesoporous clays or pillared clays are obviously superior to those on microporous supports because the mesoporous supports are highly thermal stable compared to the microporous ones. It is found that introducing lanthanum to the supports can improve the catalyst basicity and thus enhance the catalytic activities of these catalysts. Deactivation of catalysts prepared and factors influencing their stability are also discussed. (C) 1998 Academic Press.
Resumo:
Alumina intercalated laponite (Al-laponite) was prepared with a polyethylene oxide (PEO) surfactant and used as supports of nickel catalysts for the carbon dioxide reforming reaction with methane to synthesis gas. The effects of the supports of intercalated laponite and catalyst preparation on catalytic activity, stability and carbon deposition were investigated for the above reforming reaction. We found that the pore structure of the Al-laponite supports can be tailored with the surfactant and the catalyst with well-developed porosity exhibited higher catalytic activity and a longer time of catalyst stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
ZrO2-Al2O3 composite oxides and supported Ni catalysts were prepared, and characterized by N-2 adsorption/desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO2 content. The Ni catalyst supported ZrO2-Al2O3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.
Resumo:
Zr-Laponite pillared clays were prepared and used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of supports and catalysts were systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron spectroscopy (TEM) techniques. The catalytic performance and carbon deposition were investigated. It is found that Zr-Laponite pillared clays are promising catalyst supports for carbon dioxide reforming of methane. The pore structure and surface properties of such supports greatly affect the catalytic behaviors of catalysts derived. Carbon deposition on catalysts was also affected by the property and structure of supports. The sintering of nickel metal and zirconia was another factor responsible for catalyst deactivation. This new-type nickel supported catalyst Ni/Zr-Laponite(8), with well-developed porosity, gave a higher initial conversion and a relatively long-term stability, and is therefore a promising catalyst for potential application to carbon dioxide reforming of methane to synthesis gas. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.
Resumo:
The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.
Resumo:
Carbon formation on Ni/gamma-Al2O3 catalysts and its kinetics during methane reforming with carbon dioxide was studied in the temperature range of 500-700 degrees C using a thermogravimetric analysis technique. The activation energies of methane cracking, carbon gasification in CO2, as well as carbon deposition in CO2-CH4 reforming were obtained. The results show that the activation energy for carbon gasification is larger than that of carbon formation in methane cracking and that the activation energy of coking in CO2-CH4 reforming is also larger than that of methane decomposition to carbon. The dependencies of coking rate on partial pressures of CH4 and CO2 indicate that methane decomposition is the main route for carbon deposition. A mechanism and kinetic model for carbon deposition is proposed.
Resumo:
Ni catalysts supported on gamma-Al2O3, CeO2 and CeO2-A1(2)O(3) systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2-Al2O3 catalysts showed much better catalytic performance than either CeO2- or gamma-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal-support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/gamma-Al2O3 catalysts for this reaction. A weight loading of 1-5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Carbon dioxide reforming of methane into syngas over Ni/gamma-Al2O3 catalysts was systematically studied. Effects of reaction parameters on catalytic activity and carbon deposition over Ni/gamma-Al2O3 catalysts were investigated. It is found that reduced NiA1204, metal nickel, and active species of carbon deposited were the active sites for this reaction. Carbon deposition on Ni/gamma Al2O3 varied depending on the nickel loading and reaction temperature and is the major cause of catalyst deactivation. Higher nickel loading produced more coke on the catalysts, resulting in rapid deactivation and plugging of the reactor. At 5 wt % Ni/gamma-Al2O3 catalyst exhibited high activity and much lesser magnitude of deactivation in 140 h. Characterization of carbon deposits on the catalyst surface revealed that there are two kinds of carbon species (oxidized and -C-C-) formed during the reaction and they showed different reactivities toward hydrogenation and oxidation. Kinetic studies showed that the activation energy for CO production in this reaction amounted to 80 kJ/mol and the rate of CO production could be described by a Langmuir-Hinshelwood model.
Resumo:
Catalytic reforming of methane with carbon dioxide was studied in a fixed-bed reactor using unpromoted and promoted Ni/gamma-Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline-earth metal oxides (MgO, CaO) and rare-earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO-, La2O3- and CeO2-promoted Ni/gamma-Al2O3 catalysts exhibited higher stability whereas MgO- and Na2O-promoted catalysts demonstrated lower activity and significant deactivation. Metal-oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. (C) 2000 Society of Chemical Industry.
Resumo:
Various oxide-promoted Ni catalysts supported on activated carbon were prepared, and the effect of promoters on the surface structure and properties of Ni catalysts was studied. Physical adsorption (Na adsorption), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It is found that nickel is fairly uniformly distributed in the pores of the carbon support. Addition of promoters produces a more homogeneous distribution of nickel ion in carbon. However, distributions of promoters in the pores are varying. Addition of promoters increases the dispersion of nickel in carbon. Promoters also change the interaction between the carbon and Ni, resulting in significantly different behaviors of catalysts under various environments. CaO and MgO promoters improve the reactivity of nickel catalysts with O-2 but retard the interaction between nickel oxide and carbon. La2O3 shows some inhibiting effect on the interactions between nickel oxide and oxygen as well as carbon.
Resumo:
Most of the hydrogen production processes are designed for large-scale industrial uses and are not suitable for a compact hydrogen device to be used in systems like solid polymer fuel cells. Integrating the reaction step, the gas purification and the heat supply can lead to small-scale hydrogen production systems. The aim of this research is to study the influence of several reaction parameters on hydrogen production using liquid phase reforming of sugar solution over Pt, Pd, and Ni supported on nanostructured supports. It was found that the desired catalytic pathway for H-2 production involves cleavage of C-C, C-H and O-H bonds that adsorb on the catalyst surface. Thus a good catalyst for production of H2 by liquid-phase reforming must facilitate C-C bond cleavage and promote removal of adsorbed CO species by the water-gas shift reaction, but the catalyst must not facilitate C-O bond cleavage and hydrogenation of CO or CO2. Apart from studying various catalysts, a commercial Pt/gamma-alumina catalyst was used to study the effect of temperature at three different temperatures of 458, 473 and 493 K. Some of the spent catalysts were characterised using TGA, SEM and XRD to study coke deposition. The amorphous and organised form of coke was found on the surface of the catalyst. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.