17 resultados para NEOTROPICAL RODENTS
em University of Queensland eSpace - Australia
Resumo:
Small mammals are subject to predation from mammalian, avian and reptilian predators. There is an obvious advantage for prey species to detect the presence of predators in their environment, enabling them to make decisions about movement and foraging behaviour based on perceived risk of predation. We examined the effect of faecal odours from marsupial and eutherian predators, and a native reptilian predator, on the behaviour of three endemic Australian rodent species (the fawn-footed melomys, Melomys cervinipes, the bush rat, Rattus fuscipes, and the giant white-tailed rat, Uromys caudimaculatus) in rainforest remnants on the Atherton Tableland, North Queensland, Australia. Infrared camera traps were used to assess visit rates of rodents to odour stations containing faecal and control odours. Rodents avoided odour stations containing predator faeces, but did not avoid herbivore or control odours. The responses of the three prey species differed: in the late wet season U. caudimaculatus avoided predator odours, whereas R. fuscipes and M. cervinipes did not. In contrast, in the late dry season all three species avoided odour stations containing predator odours. We speculate that these different responses may result from variation in life history traits between the species. (c) 2006 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.
Resumo:
An improved HPLC method has been established for the measurement of harderoporphyrin (HP) in the harderian gland of rats and mice. Groups of female Wistar rats were given a single oral dose of sodium arsenite at 0, 0.5 or 5.0 mg As(III)/kg body weight, or a slurry of arsenic-contaminated soil at equivalent dose rates and the animals were sacrificed 96 h after dosing. A group of C57BL/6J female mice were chronically exposed to drinking water containing 500 mug As(V)/I of sodium arsenate ad libitum for over 2 years. Porphyrins were measured in the harderian glands of rats and mice. Our results suggest that HP and the alteration of the porphyrin profile in the harderian glands of rodents is a highly sensitive biomarker for both single sub-lethal and chronic arsenic exposure. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The characteristics of nitrogen acquisition, transport and assimilation were investigated in species of an Atlantic Forest succession over calcareous soil in south-eastern Brazil. Differences in behaviour were observed within the regeneration guilds. Pioneer species showed high leaf nitrogen contents, a high capacity to respond to increased soil nitrogen availability, a high capacity for leaf nitrate assimilation and were characterized by the transport of nitrate + asparagine. At the other end of the succession, late secondary species had low leaf nitrogen contents, little capacity to respond to increased soil nitrogen availability, low leaf nitrate assimilation and were active in the transport of asparagine + arginine. The characteristics of nitrogen nutrition in some early secondary species showed similarities to those of pioneer species whereas others more closely resembled late secondary species. Average leaf delta(15)N values increased along the successional gradient. The results indicate that the nitrogen metabolism characteristics of species may be an additional ecophysiological tool in classifying tropical forest tree species into ecological guilds, and may have implications for regeneration programmes in degraded areas.
Resumo:
The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.
Resumo:
Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N = 11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.
Resumo:
DCC (deleted in colorectal cancer)-the receptor of the netrin-1 neuronal guidance factor-is expressed and is active in the central nervous system (CNS) during development, but is down-regulated during maturation. The substantia nigra contains the highest level of netrin-1 mRNA in the adult rodent brain, and corresponding mRNA for DCC has also been detected in this region but has not been localized to any particular neuron type. In this study, an antibody raised against DCC was used to determine if the protein was expressed by adult dopamine neurons, and identify their distribution and projections. Significant DCC-immunoreactivity was detected in midbrain, where it was localized to ventrally displaced A9 dopamine neurons in the substantia nigra, and ventromedial A10 dopamine neurons predominantly situated in and around the interfascicular nucleus. Strong immunoreactivity was not detected in dopamine neurons found elsewhere, or in non-dopamine-containing neurons in the midbrain. Terminal fields selectively labeled with DCC antibody corresponded to known nigrostriatal projections to the dorsolateral striatal patches and dorsomedial shell of the accumbens, and were also detected in prefrontal cortex, septum, lateral habenular and ventral pallidum. The unique distribution of DCC-immunoreactivity in adult ventral midbrain dopamine neurons suggests that netrin-1/DCC signaling could function in plasticity and remodeling previously identified in dopamine projection pathways. In particular, a recent report that DCC is regulated through the ubiquitin-proteosome system via Siah/Sina proteins, is consistent with a potential involvement in genetic and sporadic forms of Parkinson's disease. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Wolbachia bacteria are common intracellular symbionts of arthropods and have been extensively studied in Drosophila. Most research focuses on two Old Word hosts, Drosophila melanogaster and Drosophila simulans, and does not take into account that some of the Wolbachia associations in these species may have evolved only after their fast global expansion and after the exposure to Wolbachia of previously isolated habitats. Here we looked at Wolbachia of Neotropical Drosophila species. Seventy-one lines of 16 Neotropical Drosophild species sampled in different regions and at different time points were analyzed. Wolbachia is absent in lines of Drosophild willistoni collected before the 1970s, but more recent samples are infected with a strain designated wWiL Wolbachia is absent in all other species of the willistoni group. Polymorphic wWil-related strains were detected in some saltans group species, with D. septentriosaltans being coinfected with at least four variants. Based on wsp and ftsZ sequence data, wWil of D. willistoni is identical to wAu, a strain isolated from D. simulans, but can be discriminated when using a polymorphic minisatellite marker. In contrast to wAu, which infects both germ line and somatic tissues of D. simulans, wWil is found exclusively in the primordial germ line cells of D. willistoni embryos. We report on a pool of closely related Wolbachia strains in Neotropical Drosophila species as a potential source for the wAu strain in D. simulans. Possible evolutionary scenarios reconstructing the infection history of wAu-like Wolbachia in Neotropical Drosophild species and the Old World species D. simulans are discussed.
Resumo:
In the adult olfactory nerve pathway of rodents, each primary olfactory axon forms a terminal arbor in a single glomerulus in the olfactory bulb. During development, axons are believed to project directly to and terminate precisely within a glomerulus without any exuberant growth or mistargeting. To gain insight into mechanisms underlying this process, the trajectories of primary olfactory axons during glomerular formation were studied in the neonatal period. Histochemical staining of mouse olfactory bulb sections with the lectin Dolichos biflorus-agglutinin revealed that many olfactory axons overshoot the glomerular layer and course into the deeper laminae of the bulb in the early postnatal period. Single primary olfactory axons were anterogradely labelled either with the lipophilic carbocyanine dye, 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), or with horseradish peroxidase (HRP) by localized microinjections into the nerve fiber layer of the rat olfactory bulb. Five distinct trajectories of primary olfactory axons were observed in DLI-labelled preparations at postnatal day 1.5 (P1.5). Axons either coursed directly to and terminated specifically within a glomerulus, branched before terminating in a glomerulus, bypassed glomeruli and entered the underlying external plexiform layer, passed through the glomerular layer with side branches into glomeruli, or branched into more than one glomerulus. HRP-labelled axon arbors from eight postnatal ages were reconstructed by camera lucida and were used to determine arbor length, arbor area, and arbor branch number. Whereas primary olfactory axons display errors in laminar targeting in the mammalian olfactory bulb, axon arbors typically achieve their adult morphology without exuberant growth. Many olfactory axons appear not to recognize appropriate cues to terminate within the glomerular layer during the early postnatal period. However, primary olfactory axons exhibit precise targeting in the glomerular layer after P5.5, indicating temporal differences in either the presence of guidance cues or the ability of axons to respond to these cues. (C) 1999 Wiley-Liss, Inc.
Resumo:
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of several mutagenic and carcinogenic heterocyclic amines formed during the cooking process of protein-rich foods, These compounds are highly mutagenic and have been shown to produce tumours in various tissues in rodents and non-human primates. Metabolic activation of IQ is a two-step process involving N-hydroxylation by CYP1A2 followed by esterification to a more reactive species capable of forming adducts with DNA, To date, acetylation and sulphation have been proposed as important pathways in the formation of N-hydroxy esters, In this study we have demonstrated the presence of an ATP-dependent activation pathway for N-hydroxy-IQ (N-OH-IQ) leading to DNA adduct formation measured by covalent binding of [H-3]N-OH-IQ to DNA, ATP-dependent DNA binding of N-OH-IQ was greatest in the cytosolic fraction of rat liver, although significant activity was also seen in colon, pancreas and lung. ATP was able to activate N-OH-IQ almost 10 times faster than N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (7.7 +/- 0.3 and 0.9 +/- 0.1 pmol/mg protein/min, respectively). Using reported intracellular concentrations of cofactor, the ability of ATP to support DNA binding was similar to that seen with 3'-phosphoadenosine 5'-phosphosulphate and similar to 50% of that seen with acetyl coenzyme A (AcCoA), In addition to DNA binding, HPLC analysis of the reaction mixtures using ATP as co-factor showed the presence of two stable, polar metabolites, With AcCoA, only one metabolite was seen. The kinase inhibitors genistein, tyrphostin A25 and rottlerin significantly inhibited both DNA binding and metabolite formation with ATP. However, inhibition was unlikely to be due to effects on enzyme activity since the broad spectrum kinase inhibitor staurosporine had no effect and the inactive analogue of genistein, daidzein, was as potent as genistein, The effects of genistein and daidzein, which are naturally occurring isoflavones from soy and other food products, on DNA adduct formation may potentially be useful in the prevention of heterocyclic amine-induced carcinogenesis.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
wPrey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Acanthoplacatus gen. nov., a new genus of viviparous gyrodactylid, is described from the rns and skin of siganid fishes from the Great Barrier Reef, Australia. The genus is characterized by a muscular, tube-like haptor with 16 marginal hooks on the posterior margin. The ventral lobe of the haptor is located anteriorly relative to the dorsal lobe and contains a pair of hamuli and a ventral bar with posteriorly-projecting ventral bar membrane. A dorsal bar is absent. Five pairs of posterior gland cells surround the posterior terminations of the gut. The male copulatory organ is a muscular, non-eversible bulb with several spines around the distal opening. Species of Acanthoplacatus have a bilateral excretory system consisting of six pairs of flame cells and a pair of excretory bladders. Seven new species are described: Acanthoplacatus adlardi sp. nov. and A. amplihamus sp. nov. from Siganus punctatus (Forster, 1801), A. brauni sp. nov. from S. corallinus (Valenciennes, 1835), A. parvihamus sp. nov. from S. vulpinus (Schlegel and Mueller, 1845), A. puelli sp. nov. from S. puellus Schlegel, 1852, A. shieldsi sp. nov. from S. lineatus (Valenciennes, 1835) and A. sigani sp. nov. from S. fuscescens (Houttuyn, 1782). Species can be discriminated by shape and size of the hamuli, marginal hooks and ventral bar and by male copulatory organ sclerite morphology. Three species (A. brauni sp. nov., A. shieldsi sp. nov. and A. sigani sp. nov.) were assessed for seasonal variation of sclerite size. Ten of thirteen morphological characters showed seasonal variation in size for at least one of the species. The characters were longer in winter except dorsal root tissue cap width. Only one character, marginal hook length, showed significant seasonal variation for all three species. Species of Acanthoplacatus were observed to attach using only the marginal hooks and the role of hamuli in attachment is unclear. The dorsal rn of the host is the preferred site for most species but the anal fin, caudal fin and body surfaces are preferred by some species. Prevalences for species range from 57 to 100%.
Resumo:
Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a member of the steroid hormone receptor superfamily. In rodents, PPAR alpha. alters genes involved in cell cycle regulation in hepatocytes. Some of these genes are implicated in neuronal cell death. Therefore, in this study, we examined the toxicological consequence of PPAR alpha activation in rat primary cultures of cerebellar granule neurons. Our studies demonstrated the presence of PPAR alpha mRNA in cultures by reverse transcriptase-polymerase chain reaction. After 10 days in vitro, cerebellar granule neuron cultures were incubated with the selective PPAR alpha activator 4-chloro-6-(2,3-xylidino)2-pyrimidinylthioacetic acid (Wy-14,643). The inherent toxicity of Wy-14,643 and the effect of PPAR alpha activation following toxic stimuli were assessed. In these studies, neurotoxicity was induced through reduction of extracellular [KCl] from 25 mM to 5.36 mM. We observed no inherent toxicity of Wy-1 4,643 (24 hr) in cultured cerebellar granule cells. However, after reduction of [KCl], cerebellar granule cell cultures incubated with Wy-14,643 showed significantly greater toxicity than controls. These results suggest a posssible role for PPAR(x in augmentation of cerebellar granule neuronal death after toxic stimuli. (C) 2001 Wiley-Liss, Inc.
Resumo:
The link between body size and risk of extinction has been the focus of much recent attention. For Australian terrestrial mammals this link is of particular interest because it is widely believed that species in the intermediate size range of 35-5500 g (the critical weight range) have been the most prone to recent extinction. But the relationship between body size and extinction risk in Australian mammals has never been subject to a robust statistical analysis. Using a combination of randomization tests and phylogenetic comparative analyses, we found that Australian mammal extinctions and declines have been nonrandom with respect to body size, but we reject the hypothesis of a critical weight range at intermediate sizes. Small species appear to be the least prone to extinction, but extinctions have not been significantly clustered around intermediate sizes. Our results suggest that hypotheses linking intermediate body size with high risk of extinction in Australian mammals are misguided and that the focus of future research should shift to explaining why the smallest species are the most resistant to extinction.