12 resultados para NEOPROTEROZOIC CRUSTAL ACCRETION

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoproterozoic marine successions worldwide record a shift in average delta(13)C values from 0 to +3.5parts per thousand, with the latter value evident in successions younger than 1250 Ma. New carbon isotope data from the similar to 1300 to 1270 Ma Dismal Lakes Group, Arctic Canada, provide further insight into this fundamental transition. Data reveal that the shift to higher VC values was gradual and marked by occasional excursions to values less than 0 parts per thousand. When compared to records from older and younger marine successions, it is evident that the difference between isotopic minima and maxima increased with time, indicating that the marine system evolved to become isotopically more variable. We interpret these patterns to record an increase in the crustal inventory of organic carbon, reflecting eukaryotic diversification and a change in the locus of organic carbon burial to include anoxic deep marine sites where preservation potential was high. We speculate that the release of O-2 to Earth's surface environments associated with increased organic carbon storage induced irreversible changes in the Mesoproterozoic biosphere, presaging the more extreme environmental and evolutionary developments of the Neoproterozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitold source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The Occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport Of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite - I-type granite - incipient charnockite association.

Relevância:

20.00% 20.00%

Publicador: