68 resultados para NAD1-dependent
em University of Queensland eSpace - Australia
Resumo:
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.
Resumo:
T cells recognize peptide epitopes bound to major histocompatibility complex molecules. Human T-cell epitopes have diagnostic and therapeutic applications in autoimmune diseases. However, their accurate definition within an autoantigen by T-cell bioassay, usually proliferation, involves many costly peptides and a large amount of blood, We have therefore developed a strategy to predict T-cell epitopes and applied it to tyrosine phosphatase IA-2, an autoantigen in IDDM, and HLA-DR4(*0401). First, the binding of synthetic overlapping peptides encompassing IA-2 was measured directly to purified DR4. Secondly, a large amount of HLA-DR4 binding data were analysed by alignment using a genetic algorithm and were used to train an artificial neural network to predict the affinity of binding. This bioinformatic prediction method was then validated experimentally and used to predict DR4 binding peptides in IA-2. The binding set encompassed 85% of experimentally determined T-cell epitopes. Both the experimental and bioinformatic methods had high negative predictive values, 92% and 95%, indicating that this strategy of combining experimental results with computer modelling should lead to a significant reduction in the amount of blood and the number of peptides required to define T-cell epitopes in humans.
Resumo:
The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.
Resumo:
Our previous investigations of possible lung mechanisms underlying the effectiveness of nebulized morphine for the relief of dyspnoea, have shown a high density of non-conventional opioid binding sites in rat airways with similar binding characteristics (opioid alkaloid-sensitive, opioid peptide-insensitive) to that of putative mu(3)-opioid receptors on immune cells. To investigate whether these lung opioid binding sites are functional receptors, this study was designed to determine (using superfusion) whether morphine modulates the K+-evoked release of the pro-inflammatory neuropeptide, substance P (SP), from rat peripheral airways. Importantly, K+-evoked SP release was Ca2+-dependent, consistent with vesicular release. Submicromolar concentrations of morphine (1 and 200 nM) inhibited K+-evoked SP release from rat peripheral airways in a naloxone (1 mu M) reversible manner. By contrast, 1 mu M morphine enhanced K+-evoked SP release and this effect was not reversed by 1 mu M naloxone. However, 100 mu M naloxone not only antagonized the facilitatory effect of 1 mu M morphine on K+-evoked SP release from rat peripheral airways but it inhibited release to a similar extent as 200 nM morphine. It is possible that these latter effects are mediated by non-conventional opioid receptors located on mast cells, activation of which causes naloxone-reversible histamine release that in turn augments the release of SP from sensory nerve terminals in the peripheral airways. Clearly, further studies are required to investigate this possibility. (C) 1997 Academic Press Limited.
Resumo:
To investigate the growth-regulating action of estrogen on vascular smooth muscle cells (SMC), effects of beta-17-estradiol (beta-E-2) on phenotypic modulation and proliferation of rabbit aortic SMC were observed in vitro. At 10(-8) M, beta-E-2 significantly slowed the decrease in volume fraction of myofilaments (V(v)myo) of freshly dispersed SMCs in primary culture, indicating an inhibitory effect of beta-E-2 On spontaneous phenotypic modulation of SMC from a contractile to a synthetic phenotype. Freshly dispersed SMCs treated with beta-E-2 also had a relatively longer quiescent phase than control cells before intense proliferation occurred. This was in contrast to SMCs in passage 2-3 (synthetic state), where beta-E-2-treated cells replicated significantly faster than untreated cells. beta-E-2 also markedly enhanced the serum-induced DNA synthesis of synthetic SMCs in a concentration-dependent manner within physiological range (10(-10) to 10-8 M). These findings indicate that the growth-regulating effect of estrogen on vascular SMC is dependent on the cell's phenotypic stare. It delays the cell cycle re-entry of the contractile SMCs by retarding their phenotypic modulation however, once cells have modulated to the synthetic phenotype, it promotes their replication. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The effect of incoherent interlayer transport on the interlayer resistance of a layered metal is considered. We find that for both quasi-one-dimensional and quasi-two-dimensional Fermi liquids the angular dependence of the magnetoresistance is essentially the same for coherent and incoherent transport. Consequently, the existence of a three-dimensional Fermi surface is not necessary to explain the oscillations in the magnetoresistance that are seen in many organic conductors as the field direction is varied. [S0031-9007(98)07660-1].
Resumo:
The chemical potential of adsorbed film inside cylindrical mesopores is dependent on the attractive interactions between the adsorbed molecules and adsorbent, the curvature of gas/adsorbed phase interface, and surface tension. A state equation of the adsorbed film is proposed to take into account the above factors. Nitrogen adsorption on model adsorbents, MCM-41, which exhibit uniform cylindrical channels, are used to verify the theoretical analysis. The proposed theory is capable of describing the important features of adsorption processes in cylindrical mesopores. According to this theory, at a given relative pressure, the smaller the pore radius is, the thicker the adsorbed film will be. The thickening of adsorbed films in the pores as the vapor pressure increases inevitably causes an increase in the interface curvature, which consequently leads to capillary condensation. Besides, this study confirmed that the interface tension depends substantially on the interface curvature in small mesopores. A quantitative relationship between the condensation pressure and the pore radius can be derived from the state equation and used to predict the pore radius from a condensation pressure, or vice versa.
Resumo:
Arylamine N-acetyltransferase-1 (NAT1) is a polymorphically expressed enzyme that is widely distributed throughout the body. In the present study, we provide evidence for substrate-dependent regulation of this enzyme. Human peripheral blood mononuclear cells cultured in medium supplemented with p-aminobenzoic acid (PABA; 6 mu M) for 24 h showed a significant decrease (50-80%) in NAT1 activity. The loss of activity was concentration-dependent (EC50 similar to 2 mu M) and selective because PABA had no effect on the activity of constitutively expressed lactate dehydrogenase or aspartate aminotransferase. PABA also induced down-regulation of NAT1 activity in several human cell lines grown at confluence. Substrate-dependent downregulation was not restricted to PABA. Addition of other NAT1 substrates, such as p-aminosalicylic acid, ethyl-p-aminobenzoate, or p-aminophenol to peripheral blood mononuclear cells in culture also resulted in significant (P < .05) decreases in NAT1 activity. However, addition of the NAT2-selective substrates sulfamethazine, dapsone, or procainamide did not alter NAT1 activity. Western blot analysis using a NAT1-specific antibody showed that the loss of NAT1 activity was associated with a parallel reduction in the amount of NAT1 protein (r(2) = 0.95). Arylamines that did not decrease NAT1 activity did not alter NAT1 protein levels. Semiquantitative reverse transcriptase polymerase chain reaction of mRNA isolated from treated and untreated cells revealed no effect of PABA on NAT1 mRNA levels. We conclude that NAT1 can be down-regulated by arylamines that are themselves NAT1 substrates. Because NAT1 is involved in the detoxification/activation of various drugs and carcinogens, substrate-dependent regulation may have important consequences with regard to drug toxicity and cancer risk.
Resumo:
Strain-dependent hydraulic conductivities are uniquely defined by an environmental factor, representing applied normal and shear strains, combined with intrinsic material parameters representing mass and component deformation moduli, initial conductivities, and mass structure. The components representing mass moduli and structure are defined in terms of RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock. These two empirical parameters determine the hydraulic response of a fractured medium to the induced-deformations The constitutive relations are verified against available published data and applied to study one-dimensional, strain-dependent fluid flow. Analytical results indicate that both normal and shear strains exert a significant influence on the processes of fluid flow and that the magnitude of this influence is regulated by the values of RQD and RMR.
Resumo:
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of several mutagenic and carcinogenic heterocyclic amines formed during the cooking process of protein-rich foods, These compounds are highly mutagenic and have been shown to produce tumours in various tissues in rodents and non-human primates. Metabolic activation of IQ is a two-step process involving N-hydroxylation by CYP1A2 followed by esterification to a more reactive species capable of forming adducts with DNA, To date, acetylation and sulphation have been proposed as important pathways in the formation of N-hydroxy esters, In this study we have demonstrated the presence of an ATP-dependent activation pathway for N-hydroxy-IQ (N-OH-IQ) leading to DNA adduct formation measured by covalent binding of [H-3]N-OH-IQ to DNA, ATP-dependent DNA binding of N-OH-IQ was greatest in the cytosolic fraction of rat liver, although significant activity was also seen in colon, pancreas and lung. ATP was able to activate N-OH-IQ almost 10 times faster than N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (7.7 +/- 0.3 and 0.9 +/- 0.1 pmol/mg protein/min, respectively). Using reported intracellular concentrations of cofactor, the ability of ATP to support DNA binding was similar to that seen with 3'-phosphoadenosine 5'-phosphosulphate and similar to 50% of that seen with acetyl coenzyme A (AcCoA), In addition to DNA binding, HPLC analysis of the reaction mixtures using ATP as co-factor showed the presence of two stable, polar metabolites, With AcCoA, only one metabolite was seen. The kinase inhibitors genistein, tyrphostin A25 and rottlerin significantly inhibited both DNA binding and metabolite formation with ATP. However, inhibition was unlikely to be due to effects on enzyme activity since the broad spectrum kinase inhibitor staurosporine had no effect and the inactive analogue of genistein, daidzein, was as potent as genistein, The effects of genistein and daidzein, which are naturally occurring isoflavones from soy and other food products, on DNA adduct formation may potentially be useful in the prevention of heterocyclic amine-induced carcinogenesis.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
Our previous studies indicate that oxycodone is a putative kappa-opioid agonist, whereas morphine is a well documented mu-opioid agonist. Because there is limited information regarding the development of tolerance to oxycodone, this study was designed to 1) document the development of tolerance to the antinociceptive effects of chronically infused i.v. oxycodone relative to that for i.v. morphine and 2) quantify the degree of antinociceptive cross-tolerance between morphine and oxycodone in adult male Dark Agouti (DA) rats. Antinociceptive testing was performed using the tail-flick latency test. Complete antinociceptive tolerance was achieved in 48 to 84 h after chronic infusion of equi-antinociceptive doses of i.v. oxycodone (2.5 mg/24 h and 5 mg/24 h) and i.v. morphine (10 mg/24 h and 20 mg/24 h, respectively). Dose-response curves for bolus doses of i.v. and i.c.v. morphine and oxycodone were produced in naive, morphine-tolerant, and oxycodone-tolerant rats. Consistent with our previous findings that oxycodone and morphine produce their intrinsic antinociceptive effects through distinctly different opioid receptor populations, there was no discernible cross-tolerance when i.c.v. oxycodone was given to morphine-tolerant rats. Similarly, only a low degree of cross-tolerance (approximate to 24%) was observed after i.v. oxycodone administration to morphine-tolerant rats. By contrast, both i.v. and i.c.v. morphine showed a high degree of cross-tolerance (approximate to 71% and approximate to 54%, respectively) in rats rendered tolerant to oxycodone. Taken together, these findings suggest that, after parenteral but not supraspinal administration, oxycodone is metabolized to a mu-opioid agonist metabolite, thereby explaining asymmetric and incomplete cross-tolerance between oxycodone and morphine.
Resumo:
IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis, In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is turner and therapy dependent.