169 resultados para N-body simulation

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement (Schmidt number) is small for any bipartite split along an edge of the tree. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitary operations. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd [Phys. Rev. A 65, 040301(R) (2002)] provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems are qudits, that is, have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To develop an appropriate dosing strategy for continuous intravenous infusions (CII) of enoxaparin by minimizing the percentage of steady-state anti-Xa concentration (C-ss) outside the therapeutic range of 0.5-1.2 IU ml(-1). Methods A nonlinear mixed effects model was developed with NONMEM (R) for 48 adult patients who received CII of enoxaparin with infusion durations that ranged from 8 to 894 h at rates between 100 and 1600 IU h(-1). Three hundred and sixty-three anti-Xa concentration measurements were available from patients who received CII. These were combined with 309 anti-Xa concentrations from 35 patients who received subcutaneous enoxaparin. The effects of age, body size, height, sex, creatinine clearance (CrCL) and patient location [intensive care unit (ICU) or general medical unit] on pharmacokinetic (PK) parameters were evaluated. Monte Carlo simulations were used to (i) evaluate covariate effects on C-ss and (ii) compare the impact of different infusion rates on predicted C-ss. The best dose was selected based on the highest probability that the C-ss achieved would lie within the therapeutic range. Results A two-compartment linear model with additive and proportional residual error for general medical unit patients and only a proportional error for patients in ICU provided the best description of the data. Both CrCL and weight were found to affect significantly clearance and volume of distribution of the central compartment, respectively. Simulations suggested that the best doses for patients in the ICU setting were 50 IU kg(-1) per 12 h (4.2 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). The best doses for patients in the general medical unit were 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 100 IU kg(-1) per 12 h (8.3 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). These best doses were selected based on providing the lowest equal probability of either being above or below the therapeutic range and the highest probability that the C-ss achieved would lie within the therapeutic range. Conclusion The dose of enoxaparin should be individualized to the patients' renal function and weight. There is some evidence to support slightly lower doses of CII enoxaparin in patients in the ICU setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG. Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model. Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG. Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brugada syndrome (BS) is a genetic disease identified by an abnormal electrocardiogram ( ECG) ( mainly abnormal ECGs associated with right bundle branch block and ST-elevation in right precordial leads). BS can lead to increased risk of sudden cardiac death. Experimental studies on human ventricular myocardium with BS have been limited due to difficulties in obtaining data. Thus, the use of computer simulation is an important alternative. Most previous BS simulations were based on animal heart cell models. However, due to species differences, the use of human heart cell models, especially a model with three-dimensional whole-heart anatomical structure, is needed. In this study, we developed a model of the human ventricular action potential (AP) based on refining the ten Tusscher et al (2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573 - 89) model to incorporate newly available experimental data of some major ionic currents of human ventricular myocytes. These modified channels include the L-type calcium current (ICaL), fast sodium current (I-Na), transient outward potassium current (I-to), rapidly and slowly delayed rectifier potassium currents (I-Kr and I-Ks) and inward rectifier potassium current (I-Ki). Transmural heterogeneity of APs for epicardial, endocardial and mid-myocardial (M) cells was simulated by varying the maximum conductance of IKs and Ito. The modified AP models were then used to simulate the effects of BS on cellular AP and body surface potentials using a three-dimensional dynamic heart - torso model. Our main findings are as follows. (1) BS has little effect on the AP of endocardial or mid-myocardial cells, but has a large impact on the AP of epicardial cells. (2) A likely region of BS with abnormal cell AP is near the right ventricular outflow track, and the resulting ST-segment elevation is located in the median precordium area. These simulation results are consistent with experimental findings reported in the literature. The model can reproduce a variety of electrophysiological behaviors and provides a good basis for understanding the genesis of abnormal ECG under the condition of BS disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an example of spontaneous transitions between qualitatively different coordination patterns during a cyclic lifting and lowering task. Eleven participants performed 12 trials of repetitive lifting and lowering in a ramp protocol in which the height of the lower shelf was raised or lowered 1 cm per cycle between 10 and 50 cm. Two distinct patterns of coordination were evident: a squat technique in which moderate range of hip, knee and ankle movement was utilised and ankle plantar-flexion occurred simultaneously with knee and hip extension; and a stoop technique in which the range of knee movement was reduced and knee and hip extension was accompanied by simultaneous ankle dorsi-flexion. Abrupt transitions from stoop to squat techniques were observed during descending trials, and from squat to stoop during ascending trials. Indications of hysteresis was observed in that transitions were more frequently observed during descending trials, and the average shelf height at the transition was 5 cm higher during ascending trials. The transitions may be a consequence of a trade-off between the biomechanical advantages of each technique and the influence of the lift height on this trade-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being able to compare the energy cost of physical activity across and between populations is important. However, energy expenditure is related to body size, so it is necessary to appropriately adjust for differences in body size when comparisons are made. This study examined the relationship between the daily energy cost of activity and body weight in 47 children aged 6-10 years. Log-log regression showed weight(1.0) to be an inappropriate adjustment for activity energy expenditure in children, with a more valid adjustment being weight(0.3). Clearly, both weight dependent and non-weight dependent activities are part of everyday living in children. This balance influences how energy expenditure is correctly adjusted for body size. Investigators interpreting data of energy expenditure in children from children of different body sizes need to take this into consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical education, now often explicitly identified with health in contemporary school curricula, continues to be implicated in the (re)production of the 'cult of the body'. We argue that HPE is a form of health promotion that attempts to 'make' healthy citizens of young people in the context of the 'risk society'. In our view there is still work to be done in understanding how and why physical education (as HPE) continues to be implicated in the reproduction of values associated with the cult of body. We are keen to understand why HPE continues to be ineffective in helping young people gain some measure of analytic and embodied 'distance' from the problematic aspects of the cult of the body. This paper offers an analysis of this enduring issue by using some contemporary analytic discourses including 'governmentality', 'risk society' and the 'new public health'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Concerns of a decrease in physical activity levels (PALs) of children and a concurrent increase in childhood obesity exist worldwide. The exact relation between these two parameters however has as yet to be fully defined in children. Objective: This study examined the relation in 47 children, aged 5–10.5 y (mean age 8.4plusminus0.9 y) between habitual physical activity, minutes spent in moderate, vigorous and hard intensity activity and body composition parameters. Design: Total energy expenditure (TEE) was calculated using the doubly labelled water technique and basal metabolic rate (BMR) was predicted from Schofield's equations. PAL was determined by PAL=TEE/BMR. Time spent in moderate, vigorous and hard intensity activity was determined by accelerometry, using the Tritrac-R3D. Body fatness and body mass index (BMI) were used as the two measures of body composition. Results: Body fat and BMI were significantly inversely correlated with PAL (r=-0.43, P=0.002 and r=-0.45, P=0.001). Times spent in vigorous activity and hard activity were significantly correlated to percentage body fat (r=-0.44, P=0.004 and r=-0.39, P=0.014), but not BMI. Children who were in the top tertiles for both vigorous activity and hard activity had significantly lower body fat percentages than those in the middle and lowest tertiles. Moderate intensity activity was not correlated with measures of body composition. Conclusions: As well as showing a significant relation between PAL and body composition, these data intimate that there may be a threshold of intensity of physical activity that is influential on body fatness. In light of world trends showing increasing childhood obesity, this study supports the need to further investigate the importance of physical activity for children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.