8 resultados para Myeloid progenitors
em University of Queensland eSpace - Australia
Resumo:
Background: Treatment with interferon and subcutaneous cytarabine produces superior cytogenetic responses in chronic myeloid leukaemia (CML) than treatment with interferon alone, but at the expense of greater toxicity. Cytarabine ocfosfate (YNK01) is an oral precursor of cytarabine that may overcome some of the inconvenience and toxicities associated with subcutaneous cytarabine administration. Patients and methods: We studied the efficacy and tolerability of combination therapy with interferon-alpha-2b and YNK01 in patients with newly diagnosed, untreated CML. Forty patients were treated with interferon-alpha-2b (5 MU/m(2)/day) plus monthly courses of YNK01 (600 mg/day for 10 days) for I year. Results: The 6-month complete haematological response rate was 63% and the 1-year major cytogenetic response rate was 30%, with 10% of cytogenetic responses being complete. With a median follow-up of 57 months, the estimated 5-year overall survival was 86% (95% confidence interval 70% to 94%). Treatment tolerability was poor, with toxicity leading to discontinuation of one or both drugs in 60% of cases. The median daily dose of interferon alpha-2b was 7.75 MU and the median dose of YNK01 was 600 mg/day for each 10-day treatment cycle. Conclusions: Interferon-alpha-2b and YNK01 produce cytogenetic responses comparable to those achieved with interferon-alpha-2b and parenteral cytarabine, although toxicity was excessive. Alternate dosing strategies may enhance the tolerability of YNK01.
Resumo:
Intensive therapy and autologous blood and marrow transplantation (ABMT) is an established post-remission treatment for acute myeloid leukemia (AML), although its exact role remains controversial and few data are available regarding longer-term outcomes. We examined the long-term outcome of patients with AML transplanted at a single center using uniform intensive therapy consisting of etoposide, melphalan and TBI. In all, 145 patients with AML underwent ABMT: 117 in first remission, 21 in second remission and seven beyond second remission. EFS and OS were significantly predicted by remission status (P
Resumo:
Adult neural progenitors have been isolated from diverse regions of the CNS using methods which primarily involve the enzymatic digestion of tissue pieces; however, interpretation of these experiments can be complicated by the loss of anatomical resolution during the isolation procedures. We have developed a novel, explant-based technique for the isolation of neural progenitors, Living CNS regions were sectioned using a vibratome and small, well-defined discs of tissue punched out. When Cultured. explants from the cortex, hippocampus, cerebellum, spinal cord, hypothalamus, and caudate nucleus all robustly gave rise to proliferating progenitors. These progenitors were similar in behaviour and morphology to previously characterised multipotent hippocampal progenitor lines. Clones from all regions examined could proliferate from single cells and give rise to secondary neurospheres at a low but consistent frequency. Immunostaining demonstrated that clonal cortical progenitors were able to differentiate into both neurons and glial cells, indicating their multipotent characteristics. These results demonstrate it is possible to isolate anatomically resolved adult neural progenitors from small amounts of tissue throughout the CNS, thus, providing a tool for investigating the frequency and characteristics of progenitor cells from different regions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The BCR-ABL tyrosine kinase inhibitor imatinib has greatly improved the outcome for patients with chronic myeloid leukaemia (CML). Unfortunately, mutations causing resistance to imatinib are leading to relapses in some patients. In addition to inhibiting the wild-type BCR-ABL, BMS-354825 inhibited 14 of 15 BCR-ABL mutants. BMS-354825 treatment of immunodeficient mice prevented the progression of the disease in mice treated with the most clinical common imatinib-resistant mutant Met351Thr. The safety and efficacy of BMS-354825 is presently being evaluated in a phase I/II clinical trial in CML patients with imatinib resistance. The frequency of clinical use of SMS-3548125 in CML patients will depend on its efficacy/safety profile in clinical trial.
Resumo:
The lineage of dendritic cells (DC), and in particular their relationship to monocytes and macrophages, remains obscure. Furthermore, the requirement for the macrophage growth factor CSF-1 during DC homeostasis is unclear. Using a transgenic mouse in which the promoter for the CSF-1R (c-fms) directs the expression of enhanced GFP in cells of the myeloid lineage, we determined that although the c-fms promoter is inactive in DC precursors, it is up-regulated in all DC subsets during differentiation. Furthermore, plasmacytoid DC and all CD11c(high) DC subsets are reduced by 50-70% in CSF-1-deficient osteopetrotic mice, confirming that CSF-1 signaling is required for the optimal differentiation of DC in vivo. These data provide additional evidence that the majority of tissue DC is of myeloid origin during steady state and supports a close relationship between DC and macrophage biology in vivo.
Resumo:
The initiation of graft-vs-host disease (GVHD) after stem cell transplantation is dependent on direct Ag presentation by host APCs, whereas the effect of donor APC populations is unclear. We studied the role of indirect Ag presentation in allogenic T cell responses by adding populations of cytokine-expanded donor APC to hemopoietic grafts that would otherwise induce lethal GVHD. Progenipoietin-1 (a synthetic G-CSF/Flt-3 ligand molecule) and G-CSF expanded myeloid dendritic cells (DC), plasmacytoid DC, and a novel granulocyte-monocyte precursor population (GM) that differentiate into class II+,CD80/CD86(+),CD40(-) APC during GVHD. Whereas addition of plasmacytoid and myeloid donor DC augmented GVHD, GM cells promoted transplant tolerance by MHC class II-restricted generation of IL-10-secreting, Ag-specific regulatory T cells. Importantly, although GM cells abrogated GVHD, graft-vs-leukemia effects were preserved. Thus, a population of cytokine-expanded GM precursors function as regulatory APCs, suggesting that G-CSF derivatives may have application in disorders characterized by a loss of self-tolerance.
Resumo:
Genes for peripheral tissue-restricted self-antigens are expressed in thymic and hematopoietic cells. In thymic medullary epithelial cells, self-antigen expression imposes selection on developing autoreactive T cells and regulates susceptibility to autoimmune disease in mouse models. Less is known about the role of self-antigen expression by hematopoietic cells. Here we demonstrate that one of the endocrine self-antigens expressed by human blood myeloid cells, proinsulin, is encoded by an RNA splice variant. The surface expression of immunoreactive proinsulin was significantly decreased after transfection of monocytes with small interfering RNA to proinsulin. Furthermore, analogous to proinsulin transcripts in the thymus, the abundance of the proinsulin RNA splice variant in blood cells corresponded with the length of the variable number of tandem repeats 5' of the proinsulin gene, known to be associated with type 1 diabetes susceptibility. Self-antigen expression by peripheral myeloid cells extends the umbrella of immunological self and, by analogy with the thymus, may be implicated in peripheral immune tolerance.