195 resultados para Muscular tissue proteins
em University of Queensland eSpace - Australia
Resumo:
The four-link chain of the motor unit represents the contemporary end-point of some two millennia of evolving knowledge in neuroscience. The paradigm shift in neuromuscular epistemology occurred in the mid-17th century. In 1666, the newly graduated Dutch doctor, Jan Swammerdam (1637-1680) published his former investigations of dissected nerve-muscle preparations. These experiments comprised the quantum leap from observation and speculation, to that of experimentation in the field of neuroanatomy and neurophysiology. In what he termed 'A Curious Experiment' he also described the phenomenon of intrinsic muscle excitability - I cannot observe that the muscle in the living animal ever absolutely ceases from all motion. Eighty years later (1752), von Haller demonstrated experimentally that irritability (contractility) was an intrinsic property of all muscular tissue; and distinguished between the sensibility of nerve impulses and the irritability of muscular contraction. This experimental progression from Swammerdam to von Haller culminated in 1850, when Claude Bernard's studies in experimental pharmacology confirmed that muscle was a functional unit, independent of any electrical innervation via its supplying nerve. This account comprises an audit of Swammerdam's work in the perspective of neuromuscular knowledge. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The study reported here investigated the immunogenicity and protective potential of a lipid core peptide (LCP) construct containing a conserved region determinant of M protein, defined as peptide J8. Parenteral immunization of mice with LCP-J8 led to the induction of high-titer serum immunoglobulin G J18-specific antibodies when the construct was coadministered with complete Freund's adjuvant (CFA) or administered alone. LCP-J8 in CFA had significantly enhanced immunogenicity compared with the monomeric peptide J8 given in CFA. Moreover, LCP-J8/CFA and LCP-J8 antisera opsonized four different group A streptococcal (GAS) strains, and the antisera did not cross-react with human heart tissue proteins. These data indicate the potential of an LCP-based M protein conserved region GAS vaccine in the induction of broadly protective immune responses in the absence of a conventional adjuvant.
Resumo:
This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)-the causative agents of rheumatic fever and subsequent rheumatic heart disease-was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases.
Resumo:
Background & objectives: To develop a broad strain coverage GAS vaccine, several strategies have been investigated which included multi-epitope approaches as well as targeting the M protein conserved C-region. These approaches, however, have relied on the use of adjuvants that are toxic for human application. The development of safe and effective adjuvants for human use is a key issue in the development of effective vaccines. In this study, we investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting GAS vaccine delivery approach. Methods: An LCP-GAS construct was synthesised incorporating multiple copies of a protective peptide epitope (J8) from the conserved carboxy terminal C-repeat region of the M protein. B10.BR mice were immunized parenterally with the LCP-J8 construct, with or without conventional adjuvant, prior to the assessment of immunogenicity and the induction of serum opsonic antibodies. Results: Our data demonstrated immunogenicity of LCP-J8 when coadministered in complete Freund's adjuvant (CFA), or administered in the absence of conventional adjuvant. In both cases, immunization led to the induction of high-titre J8 peptide-specific serum IgG antibody responses, and the induction of heterologous opsonic antibodies that did not cross-react with human heart tissue proteins. Interpretation & conclusion: These data indicated the potential of a novel self-adjuvanting LCP vaccine delivery system incorporating a synthetic GAS M protein C-region peptide immunogen in the induction of broadly protective immune responses, and pointed to the potential application of this system in human vaccine development against infectious diseases.
Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer
Resumo:
BACKGROUND. Alterations of important protein pathways, including loss of prostate secretory granules, and disruption of the prostatic secretory pathway have been identified as early events in malignancy. In this study, proteomics was used to map the differences in protein expression between normal and malignant prostate tissues and to identify and analyze differentially expressed proteins in human prostate tissue with particular regard to the proteins lost in malignancy. METHODS. Small quantities of normal and malignant prostate tissue were taken fresh from 34 radical prostatectomy cases. After histological examination, proteins were solubilized from selected tissues and separated using two-dimensional electrophoresis. Using image analysis, the proteome of normal and malignant tissues were mapped and differentially expressed proteins (present in normal and absent in malignant tissue) were identified and subsequently analyzed using peptide mass finger printing and N-terminal sequencing. Western blotting and immunohistochemistry were performed to examine expression profiles and tissue localization of candidate proteins. RESULTS. Comparison of protein maps of normal and malignant prostate were used to identify 20 proteins which were lost in malignant transformation, including prostate specific antigen (PSA), alpha-l antichymotrypsin (ACT), haptoglobin, and lactoylglutathione lyase. Three of the 20 had not previously been reported in human prostate tissue (Ubiquitin-like NEDD8, calponin, and a follistatin-related protein). Western blotting confirmed differences in the expression profiles of NEDD8 and calponin, and immunohistochemistry demonstrated differences in the cellular localization of these two proteins in normal and malignant prostate glands. CONCLUSIONS. The expression of NEDD8, calponin, and the follistatin-related protein in normal prostate tissues is a novel finding and the role of these important functional proteins in normal prostate and their loss or reduced expression in prostate malignancy warrants further investigations. (C) 2002 Wiley-Liss, Inc.
Resumo:
We sequenced cDNAs coding for chicken cellular nucleic acid binding protein (CNBP). Two slightly different variations of the open reading frame were found, each of which translates into a protein with seven zinc finger domains. The longest transcript contains an in-frame insert of 3 bp. The sequence conservation between chick CNBP cDNAs with human, rat and mouse CNBP cDNAs is extreme, especially in the coding region, where the deduced amino acid sequence identity with human, rat and mouse CNBP is 99%. CNBP-like transcripts were also found in various tissues from insect, shrimp, fish and lizard. Regions with remarkable nucleotide conservation were also found in the 3' untranslated region, indicating important functions for these regions. Quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated that in the chick, CNBP is present in all tissues examined in approximately equal ratios to total RNA. RT-PCR of total RNA isolated from different phyla indicate CNBP-like proteins art widespread throughout the animal kingdom. The extraordinary level of conservation suggests an important physiological role for CNBP. (C) 1997 Elsevier Science Inc.
Resumo:
A method is reported for introducing peptides derived from SNARE proteins that control exocytosis of vesicles at boutons formed by sympathetic ganglion cells in tissue culture. These peptides were coupled to the DNA binding domain of the Drosophila transcription factor antennapedia, called penetratin, This facilitated the passage of peptides across the bouton membrane. FMI-43 was used to monitor the exocytosis of transmitter from depolarized boutons after their exposure to the penetratin-peptide sequences IETRHNEIIKLETSIRELHD of syntaxin and KGFLSSLFGGSSK of alpha -SNAP. both of which blocked secretion, whereas the peptide sequences SELDDRA-DALQAGASQFETSAAKLKRK of synaptobrevin did not. This report introduces a readily applicable method for determining the effect of different peptide sequences of vesicle-associated proteins on secretion at vertebrate boutons and presents an account of the effects of a selection of such peptides on exocytosis. NeuroReport 12:607-610 (C) 2001 Lippincott Williams & Wilkins.
Resumo:
The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V, hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.
Resumo:
Eccentric exercise commonly results in muscle damage. The primary sequence of events leading to exercise-induced muscle damage is believed to involve initial mechanical disruption of sarcomeres, followed by impaired excitation-contraction coupling and calcium signaling, and finally, activation of calcium-sensitive degradation pathways. Muscle damage is characterized by ultrastructural changes to muscle architecture, increased muscle proteins and enzymes in the bloodstream, loss of muscular strength and range of motion and muscle soreness. The inflammatory response to exercise-induced muscle damage is characterized by leukocyte infiltration and production of pro-inflammatory cytokines within damaged muscle tissue, systemic release of leukocytes and cytokines, in addition to alterations in leukocyte receptor expression and functional activity. Current evidence suggests that inflammatory responses to muscle damage are dependent on the type of eccentric exercise, previous eccentric loading (repeated bouts), age and gender. Circulating neutrophil counts and systemic cytokine responses are greater after eccentric exercise using a large muscle mass (e.g. downhill running, eccentric cycling) than after other types of eccentric exercise involving a smaller muscle mass. After an initial bout of eccentric exercise, circulating leukocyte counts and cell surface receptor expression are attenuated. Leukocyte and cytokine responses to eccentric exercise are impaired in elderly individuals, while cellular infiltration into skeletal muscle is greater in human females than males after eccentric exercise. Whether alterations in intracellular calcium homeostasis influence inflammatory responses to muscle damage is uncertain. Furthermore, the effects of antioxidant supplements are variable, and the limited data available indicates that anti-inflammatory drugs largely have no influence on inflammatory responses to eccentric exercise. In this review, we compare local versus systemic inflammatory responses, and discuss some of the possible mechanisms regulating the inflammatory responses to exercise-induced muscle damage in humans.
Resumo:
Aims: Epstein-Barr virus (EBV) and its associated proteins may be protective against the occurrence of apoptosis that would normally inhibit cancer development and progression. Alternatively, the viral infection may cause altered or mutated expression of oncogenes or tumour suppressor genes that are necessary for tumour development. an action that may also involve apoptosis, In this study, a relationship was sought between occurrence of EBV infection, expression of apoptosis-associated proteins (tumour suppressor gene p53 and oncogenes c-myc and bcl-2) and levels of cell death (apoptosis or necrosis) in 119 cases of gastric carcinoma. Methods and results: The EBV status of the gastric carcinomas (using the EBV-encoded small RNA I (EBER-1) and in-situ hybridization), stage and grade of tumour and sex of patients were compared for bcl-2, p53 and c-myc expression patterns. EBER-1 was detected in approximately 20% of cases studied. There was no significant correlation between levels of cell death in the tumour tissue and EBV status. In the protein analyses, development and progression of gastric carcinoma, with or without EBV infection. was independent of bcl-2 expression. However, in gastric cancers with EBV infection, p53 overexpression was inhibited and c-myc expression was increased in early stage cancers, in comparison with decreased c-myc expression in late stage cancers. Conclusions: The p53 and c-myc expression patterns indicate that EBV-infected gastric carcinomas are less likely to have a natural regression via apoptosis at an early stage and explain, in part, the resistance to treatment of late stage of gastric cancers.
Resumo:
The aim of this study is to determine whether subpopulations of smooth muscle cells (SMC). as distinguished by variations in contractile and cytoskeletal proteins, appear in the neointima at different times after vascular injury, and/or whether subpopulations develop during serial passaging of these cells. Rat aortae and rabbit carotid arteries were injured with a 2F Fogarty balloon catheter and cultures established from the resulting neointima and the media 2, 6, 12, 16 and 24 weeks later. Cultures were examined at passages 1-5 and subpopulations of SMC categorised by intensity of staining for each protein by immunohistochemistry. Two populations of SMC with different staining intensities ('+ +', '+') were observed for each of the following proteins: alpha -SM actin, SM-myosin, desmin and vimentin. Populations without these proteins were also found. Changes in the percentages of cells expressing these proteins were transitory, indicating that the populations were not limited to a particular tissue (neointima or media), time after injury or passage number. One exception was found in rabbit cultures where the number of desmin-expressing cells quickly decreased with both time after injury and time in culture. Subpopulations of SMC were found at all times after injury in the media and neointima of rat and rabbit arteries, and after multiple passage of these cells. There was no pattern of development of one population suggesting that either no subpopulation has a proliferative or migratory advantage over others, or that only one population exists: that is capable of diverse phenotypic changes. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Interactions between Eph receptors and their ligands the ephrin proteins are critically important in many key developmental processes. Emerging evidence also supports a role for these molecules in postembryonic tissues, particularly in pathological processes, including tissue injury and tumor metastasis. We review the signaling mechanisms that allow the 14 Eph and nine ephrin proteins to deliver intracellular signals that regulate cell shape and movement. What emerges is that the initiation of these signals is critically dependent on which Eph and ephrin proteins are expressed, the level of their expression, and, in some cases, which splice variants are expressed. Diversity at the level of initial interaction and in the downstream signaling processes regulated by Eph-ephrin signaling provides a subtle, versatile system of regulation of intercellular adhesion, cell shape, and cell motility.
Resumo:
Like many positive-strand RNA viruses, replication of the hepatitis C virus (HCV) is associated with cytoplasmic membrane rearrangements. However, it is unclear which HCV Proteins induce these ultrastructural features. This work examined the morphological changes induced by expression of the HCV structural proteins, core, E1 and E2, expressed from a Semliki Forest Virus (SFV) recombinant RNA replicon. Electron microscopy of cells expressing these proteins showed cytoplasmic vacuoles containing membranous and electron-dense material that were distinct from the type I cytoplasmic vacuoles induced during SFV replicon replication. Immunogold labelling showed that the core and E2 proteins localized to the external and internal membranes of these vacuoles. At times were also associated with some of the internal amorphous material. Dual immunogold labelling with antibodies raised against the core protein and against an endoplasmic reticulum (ER)-resident protein (protein disulphide isomerase) showed that the HCV-induced vacuoles were associated with ER-labelled membranes. This report has identified an association between the HCV core and E2 proteins with induced cytoplasmic vacuoles which are morphologically similar to those observed in HCV-infected liver tissue, suggesting that the HCV structural proteins may be responsible for the induction of these vacuoles during HCV replication in vivo.
Resumo:
Expression of the mRNAs encoding the astrocytic (EAAT1, EAAT2) and neuronal (EAAT3, EAAT4) excitatory amino acid transporters and the AMPA-type glutamate receptor subunits GluR2 and GluR3 was investigated in postmortem cerebellar extracts from a patient with olivopontocerebellar atrophy (OPCA) and in material from three age-matched controls. Decreased expression in the steady state level of EAAT4 mRNA in the OPCA sample was correlated with the selective loss of Purkinje cells. Neuropathological evaluation revealed reactive gliosis and concomitantly increased expression of the mRNA encoding astrocytic glial fibrillary acidic protein (GFAP). Expression of the mRNAs encoding the AMPA receptor subunits GluR2 and GluR3 subunits was found to be decreased in OPCA suggesting that excitotoxic mechanism could play a role in the pathogenesis of the selective neuronal cell death in this disorder.
Resumo:
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.