80 resultados para Multiport antennas
em University of Queensland eSpace - Australia
Resumo:
This paper details an investigation of a power combiner that uses a reflect array of dual-feed aperture-coupled microstrip patch antennas and a corporate-fed dual-polarized array as a signal distributing/combining device. In this configuration, elements of the reflect array receive a linearly polarized wave and retransmit it with an orthogonal polarization using variable-length sections of microstrip lines connecting receive and transmit ports. By applying appropriate lengths of these delay lines, the array focuses the transmitted wave onto the feed array. The operation of the combiner is investigated for a small-size circular reflect array for the cases of -3 dB, -6 dB and -10 dB edge illumination by the 2 x 2-element dual-polarized array.
Resumo:
The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.
Resumo:
Resistively loaded helical antennas, used in the normal mode and horizontally polarised, are modelled using the moment method above typical lossy ground. The distributed resistive loading was adjusted to maintain a two octave bandwidth. The centre frequency of 1 m dipoles was reduced from 250 MHz for the straight resistive wire to 50 MHz for a helix of pitch 2.5 cm and diameter 5 cm. The reduction in efficiency required to maintain the bandwidth for this helix was 12 dB. This agrees reasonably with the theory for small antennas in free space. The results were also verified by comparing measurements performed on a monopole resistively loaded helical antenna in a watertank with the numerical model used elsewhere.
Resumo:
For ground penetrating radar (GPR), smaller antennas would provide considerable practical advantages. Some of which are: portability; ease of use; and higher spatial sampling. A theoretical comparison of the fundamental limits of a small electric field antenna and a small magnetic field antenna shows that the minimum Q constraints are identical. Furthermore, it is shown that only the small magnetic loop antenna can be constructed to approach, arbitrarily closely, the fundamental minimum Q limit. This is achieved with the addition of a high permeability material which reduces energy stored in the magnetic fields. This is of special interest to some GPR applications. For example, applications requiring synthetic aperture data collection would benefit from the increased spatial sampling offered by electrically smaller antennas. Low frequency applications may also benefit, in terms of reduced antenna dimensions, by the use of electrically small antennas. Under these circumstances, a magnetic type antenna should be considered in preference to the typical electric field antenna. Numerical modeling data supports this assertion.
Resumo:
The design of an X-band tray-type spatial power combiner, which employs uniplanar quasi-Yagi antennas (QYAs) for receiving and transmitting signals by individual amplifiers, is presented. Passive and active varieties of a seven-tray power-combining structure that includes two hard horns for uniform signal launching and combining across the tray stack are developed and measured. In order to compensate for nonuniform phase across the stack, which is caused by the nonplanar wave front of the horn antennas, Schiffman phase shifters are implemented in individual trays. The experimental-results show an improved performance of the investigated tray-type power combiner when the proposed phase-error compensation is implemented. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The advantages of antennas that can resemble the shape of the body to which they are attached are obvious. However, electromagnetic modeling of such unusually shaped antennas can be difficult. In this paper, the commercially available software SolidWorks(TM) is used for accurately drawing complex shapes in conjunction with the electromagnetic software FEKO(TM) to model the EM behavior of conformal antennas. The application of SolidWorks and custom-written software allows all the required information that forms the analyzed structure to be automatically inserted into FEKO, and gives the user complete control over the antenna being modeled. This approach is illustrated by a number of simulation examples of single, wideband, multi-band planar and curved patch antennas.
Resumo:
A practical, small-size, dual-helical antenna array mounted on a mobile handset model is designed for use as diversity/MIMO receiving antennas. The array is rigorously studied with respect to its diversity performance and the achievable channel capacity. It is found that a very low correlation coefficient, a high diversity gain, an equal-mean branch SNR, and a relatively matched input impedance can be achieved at the same time. It is shown that, at a remarkably small antenna separation (similar to 0.05 lambda), the signal correlation can be reduced to nearly zero, an almost ideal independent operation of the diversity antennas. The increase in MIMO channel capacity is 100% over a single antenna system. Both measured and simulation results are presented.
Resumo:
This comment points out an inaccurate formula relating the signal correlation coefficient to the mutual impedance and corrects it. © 2005 IEEE.
Resumo:
This letter presents an analytical model for evaluating the Bit Error Rate (BER) of a Direct Sequence Code Division Multiple Access (DS-CDMA) system, with M-ary orthogonal modulation and noncoherent detection, employing an array antenna operating in a Nakagami fading environment. An expression of the Signal to Interference plus Noise Ratio (SINR) at the output of the receiver is derived, which allows the BER to be evaluated using a closed form expression. The analytical model is validated by comparing the obtained results with simulation results.
Resumo:
The paper presents theoretical and experimental investigations into performances of narrowband uniformly and nonuniformly spaced adaptive linear dipole array antennas that are subjected to pointing errors. The analysis focuses on the array's output Signal to Interference plus Noise Ratio. The presence of mutual coupling between the array elements is taken into account. It is shown that the array's tolerance to pointing errors can be enhanced by controlling the interelement spacing. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A new mutual impedance - the receiving mutual impedance - between two normal-mode helical antennas is defined, measured, and theoretically calculated. The variations of the receiving mutual impedance with antenna separation, with frequency, and with excitation source direction are critically investigated. An application of the receiving mutual impedance in direction finding demonstrates its more accurate description of the mutual coupling effect than that using the conventional mutual impedance.