15 resultados para Multiplying circuits
em University of Queensland eSpace - Australia
Resumo:
Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.
Resumo:
Electron-multiplying charge coupled devices promise to revolutionize ultrasensitive optical imaging. The authors present a simple methodology allowing reliable measurement of camera characteristics and statistics of single-electron events, compare the measurements to a simple theoretical model, and report camera performance in a truly photon-counting regime that eliminates the excess noise related to fluctuations of the multiplication gain.
Resumo:
Objective: To compare the incidence of ventilator-associated pneumonia (VAP) in patients ventilated in intensive care by means of circuits humidified with a hygroscopic heat-and-moisture exchanger with a bacterial viral filter (HME) or hot-water humidification with a heater wire in both inspiratory and expiratory circuit limbs (DHW) or the inspiratory limb only (SHW). Design: A prospective, randomized trial. Setting: A metropolitan teaching hospital's general intensive care unit. Patients: Three hundred eighty-one patients requiring a minimum period of mechanical ventilation of 48 hrs. Interventions: Patients were randomized to humidification with use of an HME (n = 190), SHW (n = 94), or DHW (n = 97). Measurements and Main Results. Study end points were VAP diagnosed on the basis of Clinical Pulmonary Infection Score (CPIS) (1), HME resistance after 24 hrs of use, endotracheal tube resistance, and HME use per patient. VAP occurred with similar frequency in all groups (13%, HME; 14%, DHW; 10%, SHW; p = 0.61) and was predicted only by current smoking (adjusted odds ratio [AOR], 2.1; 95% confidence interval [CI], 1.1-3.9; p =.03) and ventilation days (AOR, 1.05; 95% Cl, 1.0-1.2; p =.001); VAP was less likely for patients with an admission diagnosis of pneumonia (AOR, 0.40; 95% Cl, 0.4-0.2; p =.04). HME resistance after 24 hrs of use measured at a gas flow of 50 L/min was 0.9 cm H2O (0.4-2.9). Endotracheal tube resistance was similar for all three groups (16-19 cm H2O min/L; p =.2), as were suction frequency, secretion thickness, and blood on suctioning (p =.32, p =.06, and p =.34, respectively). The HME use per patient per day was 1.13. Conclusions: Humidification technique does not influence either VAP incidence or secretion characteristics, but HMEs may have air-flow resistance higher than manufacturer specifications after 24 hrs of use.
Resumo:
The Jameson Cell is a high intensity flotation device, which utilises induced air from the atmosphere. It was developed jointly by Mount Isa Mines and Professor Graeme Jameson of the University of Newcastle in the 1980s. It is proven to generate fine bubbles, in the order of 300 to 500 µm, in a high intensity, high shear and compact zone contained in the downcomer. This aerated mixture exits the downcomer into the pulp zone, which is the quiescent mineral and gangue separation zone. A number of Australian base metal flotation circuits feature a reverse flotation stage at the head of the circuit. Testwork and plant operating data has shown that the use of a Jameson Cell in the prefloat cleaner application has further improved prefloat gangue recovery and selectivity. Operation of a Jameson Cell in a carbonaceous/pyrite prefloat cleaner duty at the Mt Isa copper concentrator increased copper recovery and reduced pyrite in the copper concentrate. Testwork at Zinifex Century Zinc Mine showed a decrease in zinc losses by the utilisation of Jameson Cell prefloat cleaner. Appraisal of a Jameson Cell in a scalping role within the Mt Isa Copper Concentrator indicated significant benefits could be achieved.