23 resultados para Multilevel Linear Models

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite their limitations, linear filter models continue to be used to simulate the receptive field properties of cortical simple cells. For theoreticians interested in large scale models of visual cortex, a family of self-similar filters represents a convenient way in which to characterise simple cells in one basic model. This paper reviews research on the suitability of such models, and goes on to advance biologically motivated reasons for adopting a particular group of models in preference to all others. In particular, the paper describes why the Gabor model, so often used in network simulations, should be dropped in favour of a Cauchy model, both on the grounds of frequency response and mutual filter orthogonality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard factorial designs sometimes may be inadequate for experiments that aim to estimate a generalized linear model, for example, for describing a binary response in terms of several variables. A method is proposed for finding exact designs for such experiments that uses a criterion allowing for uncertainty in the link function, the linear predictor, or the model parameters, together with a design search. Designs are assessed and compared by simulation of the distribution of efficiencies relative to locally optimal designs over a space of possible models. Exact designs are investigated for two applications, and their advantages over factorial and central composite designs are demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from biogeography, habitat distribution, and isolation by distance were investigated in Axoclinus nigricaudus, a small subtidal rock reef fish, throughout its range in the Gulf of California. A 408 basepair fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between many pairs of populations. Phylogenetic analyses, hierarchical analyses of variance, and general linear models substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics (including temperature and salinity) but does not coincide with known oceanographic circulation patterns. Geographic distance and the nature of habitat separating populations (continuous habitat along a shoreline, discontinuous habitat along a shoreline, and open water) also contributed to population structure in general linear model analyses. To verify that local populations are genetically stable over time, one population was resampled on four occasions over eighteen months; it showed no evidence of a temporal component to diversity. These results indicate that having a planktonic life stage does not preclude geographically partitioned genetic variation over relatively small geographic distances in marine environments. Moreover, levels of genetic differentiation among populations of Axoclinus nigricaudus cannot be explained by a single factor, but are due to the combined influences of a biogeographic boundary, habitat, and geographic distance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many occupational safety interventions, the objective is to reduce the injury incidence as well as the mean claims cost once injury has occurred. The claims cost data within a period typically contain a large proportion of zero observations (no claim). The distribution thus comprises a point mass at 0 mixed with a non-degenerate parametric component. Essentially, the likelihood function can be factorized into two orthogonal components. These two components relate respectively to the effect of covariates on the incidence of claims and the magnitude of claims, given that claims are made. Furthermore, the longitudinal nature of the intervention inherently imposes some correlation among the observations. This paper introduces a zero-augmented gamma random effects model for analysing longitudinal data with many zeros. Adopting the generalized linear mixed model (GLMM) approach reduces the original problem to the fitting of two independent GLMMs. The method is applied to evaluate the effectiveness of a workplace risk assessment teams program, trialled within the cleaning services of a Western Australian public hospital.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measuring perceptions of customers can be a major problem for marketers of tourism and travel services. Much of the problem is to determine which attributes carry most weight in the purchasing decision. Older travellers weigh many travel features before making their travel decisions. This paper presents a descriptive analysis of neural network methodology and provides a research technique that assesses the weighting of different attributes and uses an unsupervised neural network model to describe a consumer-product relationship. The development of this rich class of models was inspired by the neural architecture of the human brain. These models mathematically emulate the neurophysical structure and decision making of the human brain, and, from a statistical perspective, are closely related to generalised linear models. Artificial neural networks or neural networks are, however, nonlinear and do not require the same restrictive assumptions about the relationship between the independent variables and dependent variables. Using neural networks is one way to determine what trade-offs older travellers make as they decide their travel plans. The sample of this study is from a syndicated data source of 200 valid cases from Western Australia. From senior groups, active learner, relaxed family body, careful participants and elementary vacation were identified and discussed. (C) 2003 Published by Elsevier Science Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Aims Plants regulate their architecture strongly in response to density, and there is evidence that this involves changes in the duration of leaf extension. This questions the approximation, central in crop models, that development follows a fixed thermal time schedule. The aim of this research is to investigate, using maize as a model, how the kinetics of extension of grass leaves change with density, and to propose directions for inclusion of this regulation in plant models. • Methods Periodic dissection of plants allowed the establishment of the kinetics of lamina and sheath extension for two contrasting sowing densities. The temperature of the growing zone was measured with thermocouples. Two-phase (exponential plus linear) models were fitted to the data, allowing analysis of the timing of the phase changes of extension, and the extension rate of sheaths and blades during both phases. • Key Results The duration of lamina extension dictated the variation in lamina length between treatments. The lower phytomers were longer at high density, with delayed onset of sheath extension allowing more time for the lamina to extend. In the upper phytomers—which were shorter at high density—the laminae had a lower relative extension rate (RER) in the exponential phase and delayed onset of linear extension, and less time available for extension since early sheath extension was not delayed. • Conclusions The relative timing of the onset of fast extension of the lamina with that of sheath development is the main determinant of the response of lamina length to density. Evidence is presented that the contrasting behaviour of lower and upper phytomers is related to differing regulation of sheath ontogeny before and after panicle initiation. A conceptual model is proposed to explain how the observed asynchrony between lamina and sheath development is regulated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the spin-1/2 Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square lattice at one end, a set of decoupled spin chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations, and varying dimensionality. There is a large region of the usual two-sublattice Neel phase, a three-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wave vector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical. [S0163-1829(99)10421-1].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When linear equality constraints are invariant through time they can be incorporated into estimation by restricted least squares. If, however, the constraints are time-varying, this standard methodology cannot be applied. In this paper we show how to incorporate linear time-varying constraints into the estimation of econometric models. The method involves the augmentation of the observation equation of a state-space model prior to estimation by the Kalman filter. Numerical optimisation routines are used for the estimation. A simple example drawn from demand analysis is used to illustrate the method and its application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we investigate the effects of potential models on the description of equilibria of linear molecules (ethylene and ethane) adsorption on graphitized thermal carbon black. GCMC simulation is used as a tool to give adsorption isotherms, isosteric heat of adsorption and the microscopic configurations of these molecules. At the heart of the GCMC are the potential models, describing fluid-fluid interaction and solid-fluid interaction. Here we studied the two potential models recently proposed in the literature, the UA-TraPPE and AUA4. Their impact in the description of adsorption behavior of pure components will be discussed. Mixtures of these components with nitrogen and argon are also studied. Nitrogen is modeled a two-site plus discrete charges while argon as a spherical particle. GCMC simulation is also used for generating simulation mixture isotherms. It is found that co-operation between species occurs when the surface is fractionally covered while competition is important when surface is fully loaded.