47 resultados para Multi-radio
em University of Queensland eSpace - Australia
Resumo:
Wireless Mesh Networks (WMNs), based on commodity hardware, present a promising technology for a wide range of applications due to their self-configuring and self-healing capabilities, as well as their low equipment and deployment costs. One of the key challenges that WMN technology faces is the limited capacity and scalability due to co-channel interference, which is typical for multi-hop wireless networks. A simple and relatively low-cost approach to address this problem is the use of multiple wireless network interfaces (radios) per node. Operating the radios on distinct orthogonal channels permits effective use of the frequency spectrum, thereby, reducing interference and contention. In this paper, we evaluate the performance of the multi-radio Ad-hoc On-demand Distance Vector (AODV) routing protocol with a specific focus on hybrid WMNs. Our simulation results show that under high mobility and traffic load conditions, multi-radio AODV offers superior performance as compared to its single-radio counterpart. We believe that multi-radio AODV is a promising candidate for WMNs, which need to service a large number of mobile clients with low latency and high bandwidth requirements.
Resumo:
The paper presents investigations into compact zero-thickness wideband antennas capable of operating in many frequency bands within 800-3000MHz. Multi-band operation of these antennas is accomplished by suitable meandering of conducting segments that may be supported by a thin dielectric film. The antennas are capable of operating with a very small ground plane formed by an adjacent conducting surface or a feeding transmission line. Because of the use of flexible materials, these antennas can be conformed to planar or cylindrical structures. Their operation is tested experimentally in stand-alone configurations as well as in the presence of enclosures.
Resumo:
A reversible linear master equation model is presented for pressure- and temperature-dependent bimolecular reactions proceeding via multiple long-lived intermediates. This kinetic treatment, which applies when the reactions are measured under pseudo-first-order conditions, facilitates accurate and efficient simulation of the time dependence of the populations of reactants, intermediate species and products. Detailed exploratory calculations have been carried out to demonstrate the capabilities of the approach, with applications to the bimolecular association reaction C3H6 + H reversible arrow C3H7 and the bimolecular chemical activation reaction C2H2 +(CH2)-C-1--> C3H3+H. The efficiency of the method can be dramatically enhanced through use of a diffusion approximation to the master equation, and a methodology for exploiting the sparse structure of the resulting rate matrix is established.
Resumo:
Multi-frequency bioimpedance analysis (MFBIA) was used to determine the impedance, reactance and resistance of 103 lamb carcasses (17.1-34.2 kg) immediately after slaughter and evisceration. Carcasses were halved, frozen and one half subsequently homogenized and analysed for water, crude protein and fat content. Three measures of carcass length were obtained. Diagonal length between the electrodes (right side biceps femoris to left side of neck) explained a greater proportion of the variance in water mass than did estimates of spinal length and was selected for use in the index L-2/Z to predict the mass of chemical components in the carcass. Use of impedance (Z) measured at the characteristic frequency (Z(c)) instead of 50 kHz (Z(50)) did not improve the power of the model to predict the mass of water, protein or fat in the carcass. While L-2/Z(50) explained a significant proportion of variation in the masses of body water (r(2) 0.64), protein (r(2) 0.34) and fat (r(2) 0.35), its inclusion in multi-variate indices offered small or no increases in predictive capacity when hot carcass weight (HCW) and a measure of rib fat-depth (GR) were present in the model. Optimized equations were able to account for 65-90 % of the variance observed in the weight of chemical components in the carcass. It is concluded that single frequency impedance data do not provide better prediction of carcass composition than can be obtained from measures of HCW and GR. Indices of intracellular water mass derived from impedance at zero frequency and the characteristic frequency explained a similar proportion of the variance in carcass protein mass as did the index L-2/Z(50).
Resumo:
A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.
Resumo:
We investigate the X-ray properties of the Parkes sample of Bat-spectrum radio sources using data from the ROSAT All-Sky Survey and archival pointed PSPC observations. In total, 163 of the 323 sources are detected. For the remaining 160 sources, 2 sigma upper limits to the X-ray flux are derived. We present power-law photon indices in the 0.1-2.4 keV energy band for 115 sources, which were determined either with a hardness ratio technique or from direct fits to pointed PSPC data if a sufficient number of photons were available. The average photon index is <Gamma > = 1.95(-0.12)(+0.13) for flat-spectrum radio-loud quasars, <Gamma > = 1.70(-0.24)(+0.23) for galaxies, and <Gamma > = 2.40(-0.31)(+0.12) for BL Lac objects. The soft X-ray photon index is correlated with redshift and with radio spectral index in the sense that sources at high redshift and/or with flat (or inverted) radio spectra have flatter X-ray spectra on average. The results are in accord with orientation-dependent unification schemes for radio-loud active galactic nuclei. Webster et al. discovered many sources with unusually red optical continua among the quasars of this sample, and interpreted this result in terms of extinction by dust. Although the X-ray spectra in general do not show excess absorption, we find that low-redshift optically red quasars have significantly lower soft X-ray luminosities on average than objects with blue optical continua. The difference disappears for higher redshifts, as is expected for intrinsic absorption by cold gas associated with the dust. In addition, the scatter in log(f(x)/f(o)) is consistent with the observed optical extinction, contrary to previous claims based on optically or X-ray selected samples. Although alternative explanations for the red optical continua cannot be excluded with the present X-ray data, we note that the observed X-ray properties are consistent with the idea that dust plays an important role in some of the radio-loud quasars with red optical continua.
Resumo:
Curing of diglycidyl ether of bisphenol A/diaminodiphenyl sulfone (DGEBA/DDS) epoxy resin has been effected by heating with radio frequency (RF) radiation at frequencies of 30-99 MHz. The epoxy resins can be cured rapidly at low RF power levels. Comparison of the kinetics of the RF curing with thermal curing while maintaining the same curing temperature revealed no differences. Previous differences in rates of thermal and microwave curing are believed to be due to lack of temperature control during microwave curing. For RF curing,the rate of cure, at constant power level, increases at lower RF frequency, thus emphasizing one of the principal advantages of RF curing over microwave curing. (C) 1999 John Wiley & Sons, Inc.
Resumo:
We present a descriptive analysis of a mechanism to coordinate and implement human immunodeficiency virus (HIV) prevention and care in the occupational setting. The mechanism we describe is a multidisciplinary committee composed of stakeholders in the occupational health environment including unions, management, medical researchers, and medical personnel. The site chosen for the analysis was a South African sugar mill in rural KwaZulu-Natal. The factory is situated in an area of high HIV seroprevalence and has a workforce of 400 employees. The committee was initiated to coordinate a combined prevention-care initiative. The issues that were important in the formation of the committee included confidentiality, trust, and the traditional roles of the stakeholder relationships. When these points were addressed through the focus on a common goal, the committee was able to function in its role as a coordinating body. Central to this success was the inclusion of all stakeholders in the process, including those with traditionally opposing, interests and legitimacy conferred by the stakeholders. This committee was functionally effective and demonstrated the benefit of a freestanding committee dedicated to addressing HIV/acquired immune deficiency syndrome (AIDS) issues. We describe the implementation and feasibility of a multisectoral committee in directing HIV/AIDS initiatives in the occupational setting in rural South Africa.