8 resultados para Multi-Objective Optimization
em University of Queensland eSpace - Australia
Resumo:
In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints.
Resumo:
The cross-entropy (CE) method is a new generic approach to combinatorial and multi-extremal optimization and rare event simulation. The purpose of this tutorial is to give a gentle introduction to the CE method. We present the CE methodology, the basic algorithm and its modifications, and discuss applications in combinatorial optimization and machine learning. combinatorial optimization
Resumo:
Whilst traditional optimisation techniques based on mathematical programming techniques are in common use, they suffer from their inability to explore the complexity of decision problems addressed using agricultural system models. In these models, the full decision space is usually very large while the solution space is characterized by many local optima. Methods to search such large decision spaces rely on effective sampling of the problem domain. Nevertheless, problem reduction based on insight into agronomic relations and farming practice is necessary to safeguard computational feasibility. Here, we present a global search approach based on an Evolutionary Algorithm (EA). We introduce a multi-objective evaluation technique within this EA framework, linking the optimisation procedure to the APSIM cropping systems model. The approach addresses the issue of system management when faced with a trade-off between economic and ecological consequences.
Resumo:
This paper presents an approach for optimal design of a fully regenerative dynamic dynamometer using genetic algorithms. The proposed dynamometer system includes an energy storage mechanism to adaptively absorb the energy variations following the dynamometer transients. This allows the minimum power electronics requirement at the mains power supply grid to compensate for the losses. The overall dynamometer system is a dynamic complex system and design of the system is a multi-objective problem, which requires advanced optimisation techniques such as genetic algorithms. The case study of designing and simulation of the dynamometer system indicates that the genetic algorithm based approach is able to locate a best available solution in view of system performance and computational costs.
Resumo:
We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.
Resumo:
We optimized the emission efficiency from a microcavity OLEDs consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq(3)) as emitting and electron transporting layer. LiF/Al was considered as a cathode, while metallic Ag anode was used. TiO2 and Al2O3 layers were stacked on top of the cathode to alter the properties of the top mirror. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that for certain TiO2 and Al2O3 layer thicknesses, light output is enhanced as a result of the increase in both the reflectance and transmittance of the top mirror. Once the optimum structure has been determined, the microcavity OLED devices can be fabricated and characterized, and comparisons between experiments and theory can be made.