19 resultados para MtDNA
em University of Queensland eSpace - Australia
Resumo:
To better understand the evolution of mitochondrial (mt) genomes in the Acari (mites and ticks), we sequenced the mt genome of the chigger mite, Leptotrombidium pallidum (Arthropoda: Acari: Acariformes). This genome is highly rearranged relative to that of the hypothetical ancestor of the arthropods and the other species of Acari studied. The mt genome of L. pallidum has two genes for large subunit rRNA, a pseudogene for small subunit rRNA, and four nearly identical large noncoding regions. Nineteen of the 22 tRNAs encoded by this genome apparently lack either a T-arm or a D-arm. Further, the mt genome of L. pallidum has two distantly separated sections with identical sequences but opposite orientations of transcription. This arrangement cannot be accounted for by homologous recombination or by previously known mechanisms of mt gene rearrangement. The most plausible explanation for the origin of this arrangement is illegitimate inter-mtDNA recombination, which has not been reported previously in animals. In light of the evidence from previous experiments on recombination in nuclear and mt genomes of animals, we propose a model of illegitimate inter-mtDNA recombination to account for the novel gene content and gene arrangement in the mt genome of L. pallidum.
Resumo:
Australian wet forests have undergone a contraction in range since the mid-Tertiary, resulting in a fragmented distribution along the east Australian coast incorporating several biogeographical barriers. Variation in mitochondrial DNA and morphology within the satin bowerbird was used to examine biogeographical structure throughout almost the entire geographical extent of these wet forest fragments. We used several genetic analysis techniques, nested clade and barrier analyses, that use patterns inherent in the data to describe the spatial structuring. We also examined the validity of the two previously described satin bowerbird subspecies that are separated by well-defined biogeographical barriers and tested existing hypotheses that propose divergence occurs within each subspecies across two other barriers, the Black Mountain corridor and the Hunter Valley. Our data showed that the two subspecies were genetically and morphologically divergent. The northern subspecies, found in the Wet Tropics region of Queensland, showed little divergence across the Black Mountain corridor, a barrier found to be significant in other Wet Tropics species. Biogeographical structure was found through southeastern Australia; three geographically isolated populations showed genetic differentiation, although minimal divergence was found across the proposed Hunter Valley barrier. A novel barrier was found separating inland and coastal populations in southern New South Wales. Little morphological divergence was observed within subspecies, bar a trend for birds to be larger in the more southerly parts of the species' range. The results from both novel and well-established genetic analyses were similar, providing greater confidence in the conclusions about spatial divergence and supporting the validity of these new techniques.
Resumo:
The landscape of the Australian Wet Tropics can be described as islands of montane rainforest Surrounded by warmer or more xeric habitats. Historical glaciation cycles have caused expansion and contraction of these rainforest islands leading to consistent patterns of genetic divergence within species of vertebrates. To explore whether this dynamic history has promoted speciation in endemic and diverse groups Of insects, we used a combination of mtDNA sequencing and morphological characters to estimate relationships and the tempo of divergence among Australian representatives of the dung beetle genus Temnoplectron. This phylogenetic hypothesis shares a number of well-supported clades with a previously published phylogenetic hypothesis based on morphological data. though statistical support for several nodes is weak. Sister species relationships well-supported in both tree topologies. and a tree obtained by combining the two data sets. suggest that speciation has mostly been allopatric. We identify a number of speciation barriers, which coincide with phylogeographic breaks found in vertebrate species. Large sequence divergences between species emphasize that speciation events are ancient (pre-Pleistocene). The flightless, rainforest species appear to have speciated rapidly. but also in the distant past. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Phylogeographic analyses of the fauna of the Australian wet tropics rainforest have provided strong evidence for long-term isolation of populations among allopatric refugia, yet typically there is no corresponding divergence in morphology. This system provides an opportunity to examine the consequences of geographic isolation, independent of morphological divergence, and thus to assess the broader significance of historical subdivisions revealed through mitochondrial DNA phylogeography. We have located and characterized a zone of secondary contact between two long isolated (mtDNA divergence > 15%) lineages of the skink Carlia rubrigularis using one mitochondrial and eight nuclear (two intron, six microsatellite) markers. This revealed a remarkably narrow (width < 3 km) hybrid zone with substantial linkage disequilibrium and strong deficits of heterozygotes at two of three nuclear loci with diagnostic alleles. Cline centers were coincident across loci. Using a novel form of likelihood analysis, we were unable to distinguish between sigmoidal and stepped cline shapes except at one nuclear locus for which the latter was inferred. Given estimated dispersal rates of 90-133 m x gen(-1/2) and assuming equilibrium, the observed cline widths suggest effective selection against heterozygotes of at least 22-49% and possibly as high as 70%. These observations reveal substantial postmating isolation, although the absence of consistent deviations from Hardy-Weinberg equilibrium at diagnostic loci suggests that there is little accompanying premating isolation. The tight geographic correspondence between transitions in mtDNA and those for nuclear genes and corresponding evidence for selection against hybrids indicates that these morphologically cryptic phylogroups could be considered as incipient species. Nonetheless, we caution against the use of mtDNA phylogeography as a sole criterion for defining species boundaries.
Resumo:
The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25-50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60-70 cm curved carapace length, (CCL) or 15-20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the Juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.
Resumo:
The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.
Resumo:
Human social organization can deeply affect levels of genetic diversity. This fact implies that genetic information can be used to study social structures, which is the basis of ethnogenetics. Recently, methods have been developed to extract this information from genetic data gathered from subdivided populations that have gone through recent spatial expansions, which is typical of most human populations. Here, we perform a Bayesian analysis of mitochondrial and Y chromosome diversity in three matrilocal and three patrilocal groups from northern Thailand to infer the number of males and females arriving in these populations each generation and to estimate the age of their range expansion. We find that the number of male immigrants is 8 times smaller in patrilocal populations than in matrilocal populations, whereas women move 2.5 times more in patrilocal populations than in matrilocal populations. In addition to providing genetic quantification of sex-specific dispersal rates in human populations, we show that although men and women are exchanged at a similar rate between matrilocal populations, there are far fewer men than women moving into patrilocal populations. This finding is compatible with the hypothesis that men are strictly controlling male immigration and promoting female immigration in patrilocal populations and that immigration is much less regulated in matrilocal populations.
Resumo:
To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another I I species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.
Resumo:
This study surveys the population genetic structure of Childers canegrub, Antitrogus parvulus, to elucidate its population dynamics and gene flow. Antitrogus parvulus is a pest of sugarcane in the Bundaberg region and this knowledge can be used to optimise integrated pest management practices. Here, base-pair differences in the cytochrome oxidase II gene (COII) were used to characterise haplotypic diversity, infer levels of gene flow, and phylogenetic relationships of alleles and their phylogeographical structure. There were 28 unique haplotypes among the 70 sequenced individuals from the seven locations. All three variance components (among regions, among populations, within populations) are highly significant, with highest genetic diversity among regions and lowest among populations within regions. A positive correlation between migration rates and geographical distance and significant phylogeographical structure between four main geographical regions. The main implication of these findings for pest management is that if a grower can eliminate an existing infestation within a field, then reinvasion will be slow and further outbreaks within that field are unlikely to occur. The low dispersal ability of females also means that any resistance to insecticides that develops is likely to remain localised, but will rapidly become dominant within the affected population.
Resumo:
The genome of the European hedgehog, Erinaceus concolor and E. europaeus, shows a strong signal of cycles of restriction to glacial refugia and postglacial expansion. Patterns of expansion, however, differ for mitochondrial DNA (mtDNA) and preliminary analysis of nuclear markers. In this study, we determine phylogeographic patterns in the hedgehog using two loci of the major histocompatibility complex (MHC), isolated for the first time in hedgehogs. These genes show long persistence times and high polymorphism in many species because of the actions of balancing selection. Among 84 individuals screened for variation, only two DQA alleles were identified in each species, but 10 DQB alleles were found in E. concolor and six in E. europaeus. A strong effect of demography on patterns of DQB variability is observed, with only weak evidence of balancing selection. While data from mtDNA clearly subdivide both species into monophyletic subgroups, the MHC data delineate only E. concolor into distinct subgroups, supporting the preliminary findings of other nuclear markers. Together with differences in variability, this suggests that the refugia history and/or expansion patterns of E. concolor and E. europaeus differ.
Resumo:
Pine beauty moth, Panolis flammea (Denis & Schiffermuller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (F-ST=0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.
Resumo:
To explore the evolutionary consequences of climate-induced fluctuations in distribution of rainforest habitat we contrasted demographic histories of divergence among three lineages of Australian rainforest endemic skinks. The red-throated rainbow skink, Carlia rubrigularis, consists of morphologically indistinguishable northern and southern mitochondrial DNA (mtDNA) lineages that are partially reproductively isolated at their parapatric boundary. The third lineage (C. rhomboidalis) inhabits rainforests just to the south of C. rubrigularis, has blue, rather than red-throated males, and for mtDNA is more closely related to southern C. rubrigularis than is northern C. rubrigularis. Multigene coalescent analyses supported more recent divergence between morphologically distinct lineages than between morphologically conservative lineages. There was effectively no migration and therefore stronger isolation between southern C. rubrigularis and C. rhomboidalis, and low unidirectional migration between morphologically conservative lineages of C. rubrigularis. We found little or no evidence for strong differences in effective population size, and hence different contributions of genetic drift in the demographic history of the three lineages. Overall the results suggest contrasting responses to long-term fluctuations in rainforest habitats, leading to varying opportunities for speciation.
Resumo:
The arrangement of genes in the mitochondrial (mt) genomes of most insects is the same, or near-identical, to that inferred to be ancestral for insects. We sequenced the entire mt genome of the small pigeon louse, Campanulotes bidentatus compar, and part of the mt genomes of nine other species of lice. These species were from six families and the three main suborders of the order Phthiraptera. There was no variation in gene arrangement among species within a family but there was much variation in gene arrangement among the three suborders of lice. There has been an extraordinary number of gene rearrangements in the mitochondrial genomes of lice!