13 resultados para Mt Isa Basin

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abundant illite precipitation, in Proterozoic rocks from Northern Lawn Hill Platform, Mt Isa Basin, Australia, occurred in organic matter-rich black shales rather than in sandstones, siltstones and organic matter-poor shales. Sandstones and siltstones acted as impermeable rocks, as early diagenetic quartz and carbonate minerals reduced the porosity-permeability. Scanning and transmission electron microscopy (SEM and TEM) studies indicate a relation between creation of microporosity-permeability and organic matter alteration, suitable for subsequent mineral precipitation. K-Ar data indicate that organic matter alteration and the subsequent illite precipitation within the organic matter occurred during the regional hydrothermal event at 1172 +/- 150 (2sigma) Ma. Hot circulating fluids are considered to be responsible for organic matter alteration, migration and removal of volatile hydrocarbon, and consequently porosity-permeability creation. Those rocks lacking sufficient porosity-permeability, such as sandstones, siltstones and organic matter poor shales, may not have been affected by fluid movement. In hydrothermal systems, shales and mudstones may not be impermeable as usually assumed because of hydrocarbons being rapidly removed by fluid, even with relatively low total organic carbon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrocarbon migration pathways and organic mineral matter associations were used to identify brine pathways in Paleoproterozic to early Mesoproterozoic rocks from the Lawn Hill platform, Mount Isa. Several types of organic matter are identified, and their thermal imprints are used to reconstruct the thermal history of the northern to central parts of the Isa superbasin. Three major thermal hydrothermal episodes are recognized from the organic maturation studies. Isotherm plots on a 175-km-long structural-sedimentological north-south section of the Isa superbasin highlight specific fault systems that acted as hot fluid conduits during the geologic history of the basin. Some of these systems indicate continuing activity into the south Nicholson basin, supported by the presence of low reflectance (type B) bitumen. This bitumen has not been overprinted by later hydrothermal episodes and therefore represents the latest thermal event. Along the north-south profile a general southward increase in temperature is evident. The lowest temperatures are recorded in proximity to the basin margin on the southern flank of the Murphy inlier. Thermal processes and their sequence of events in the basin are recorded by organic maturation, subsequent hydrocarbon generation, its migration and destruction coincident with transport and precipitation of minerals. As some timing and trapping mechanisms for minerals may have analogues with hydrocarbon entrapment, relative timing of processes leading to organic maturation, hydrocarbon generation and migration are utilized in this study to enhance understanding of ore-grade mineralization. In the Proterozoic successions of the Mount Isa basin multiple hydrocarbon generation events are recognized. These events record the transient passage of potential metal-bearing fluids rather than background conductive heat flow from the basement. Such hydrothermal fluids are responsible for inverse maturation profiles in the vicinity of the Termite Range fault and extreme maturation (reflectance values) up to 6 percent Ro at the Grevillea prospect. At Century, intermediate Ro values of

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water recovery is one of the key parameters in flotation modelling for the purposes of plant design and process control, as it determines the circulating flow and residence time in the individual process units in the plant and has a significant effect on entrainment and froth recovery. This paper reviews some of the water recovery models available in the literature, including both empirical and fundamental models. The selected models are tested using the data obtained from the experimental work conducted in an Outokumpu 3 m(3) tank cell at the Xstrata Mt Isa copper concentrator. It is found that all the models fit the experimental data reasonably well for a given flotation system. However, the empirical models are either unable to distinguish the effect of different cell operating conditions or required to determine the empirical model parameters to be derived in an existing flotation system. The model developed by [Neethling, SJ., Lee, H.T., Cilliers, J.J., 2003, Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering 16, 1123-1130] is based on fundamental understanding of the froth structure and transfer of the water in the froth. It describes the water recovery as a function of the cell operating conditions and the froth properties which can all be determined on-line. Hence, the fundamental model can be used for process control purposes in practice. By incorporating additional models to relate the air recovery and surface bubble size directly to the cell operating conditions, the fundamental model can also be used for prediction purposes. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Entrainment in flotation can be considered as a two-step process, including the transfer of the suspended solids in the top of the pulp region just below the pulp-froth interface to the froth phase and the transfer of the entrained particles in the froth phase to the concentrate. Both steps have a strong classification characteristic. The degree of entrainment describes the classification effect of the drainage process in the froth phase. This paper briefly reviews two existing models of degree of entrainment. Experimental data were collected from an Outokumpu 3 m(3) tank cell in the Xstrata Mt. Isa Mines copper concentrator. The data are fitted to the models and the effect of cell operating conditions including air rate and froth height on the degree of entrainment is examined on a size-by-size basis. It is found that there is a strong correlation between the entrainment and the water recovery, which is close to lineal. for the fines. The degree of entrainment decreases with increase in particle size. Within the normal range of cell operating conditions, few particles coarser than 50 mu m are recovered by entrainment. In general, the degree of entrainment increases with increase in the ail rate and decreases with increase in the froth height. Air rate and froth height strongly interact with each other and affect the entrainment process mainly via changes in the froth retention time, the froth structure and froth properties. As a result, other mechanisms such as entrapment may become important in recovering the coarse entrained particles. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Jameson Cell is a high intensity flotation device, which utilises induced air from the atmosphere. It was developed jointly by Mount Isa Mines and Professor Graeme Jameson of the University of Newcastle in the 1980s. It is proven to generate fine bubbles, in the order of 300 to 500 µm, in a high intensity, high shear and compact zone contained in the downcomer. This aerated mixture exits the downcomer into the pulp zone, which is the quiescent mineral and gangue separation zone. A number of Australian base metal flotation circuits feature a reverse flotation stage at the head of the circuit. Testwork and plant operating data has shown that the use of a Jameson Cell in the prefloat cleaner application has further improved prefloat gangue recovery and selectivity. Operation of a Jameson Cell in a carbonaceous/pyrite prefloat cleaner duty at the Mt Isa copper concentrator increased copper recovery and reduced pyrite in the copper concentrate. Testwork at Zinifex Century Zinc Mine showed a decrease in zinc losses by the utilisation of Jameson Cell prefloat cleaner. Appraisal of a Jameson Cell in a scalping role within the Mt Isa Copper Concentrator indicated significant benefits could be achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TITLE: The Rural Medicine Rotation: Increasing Rural Recruitment through Quality Undergraduate Rural Experiences Eley Diann, University of Queensland, School of Medicine, Rural Clinical Division, Toowoomba 4350, Queensland Australia Baker Peter, University of Queensland, School of Medicine Rural, Clinical Division, Toowoomba 4350, Queensland Australia Chater Bruce, University of Queensland, Chair, Clinical School Management Committee, School of Medicine Rural Clinical Division, Queensland Australia CONTEXT: While rural background and rural exposure during medical training increases the likelihood of rural recruitment (Wilkinson, 2003), the quality and content of that exposure is the key to altering undergraduatesâ?? perceptions of rural practice. The Rural Clinical Division at University of Queensland (UQ) runs the Rural Medicine Rotation (RMR) within the School of Medicine. The RMR is one of five eight week clinical rotations in Year three and is compulsory for all students. The RMR provides the opportunity to learn from a wide range of health professionals and clinical exposure is not restricted to general practice but also includes remote area nursing, Indigenous health care, allied health professionals and medical specialists. Week 1 involves preparation for their rural placement with workshops and seminars and Week 8 consolidates their placement and includes case and project presentations and a summative assessment. Weeks 2-7 are spent living and working as part of the health team in different rural communities. SETTING: Rural communities in and around Queensland including locations such as Arnham Land, Thursday Island, Mt. Isa and Alice Springs METHOD: All aspects of the RMR are evaluated with surveys using both qualitative and quantitative free response questions, completed by all students at the end of the Week 8. RESULTS: Overall the RMR is evaluated highly and narratives offered by students show that the RMR provides a positive rural experience. The overall impact of the RMR for students in 2004 ranked 3.45 on a scale of 1 to 4 (1 = lowest and 4 = highest), and is exemplified by the following quote; â??I enjoyed my placement so much I am now considering rural medicine something I definitely had not considered beforeâ??. OUTCOME: The positive impact of the RMR on studentâ??s perceptions of rural medicine is encouraging and can help achieve the overall aim of increasing recruitment of the rural workforce in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stratiform Century Zn-Pb deposit and the discordant Zn-Pb lode deposits of the Burketown mineral field, northern Australia, host ore and gangue minerals with primary fluid inclusions that have not been affected by the Isan orogeny, thus providing a unique opportunity to investigate the nature of the ore-forming brines. All of the deposits are hosted in shales and siltstones belonging to the Isa superbasin and comprise sphalerite, pyrite, carbonate, quartz, galena, minor chalcopyrite, and minor illite. According to Pb model ages, the main ore stage of mineralization at Century formed at I575 Ma, some 20 m.y. after deposition of the host shale sequence. Microthermometry on undeformed, primary fluid inclusions hosted in porous sphalerite shows that the Zn at Century was transported to the deposit by a homogeneous, Ca2+- and Na+-bearing brine with a salinity of 21.6 wt percent NaCl equiv. delta D-fluid of the fluid inclusion water ranges from -89 to -83 per mil, consistent with a basinal brine that evolved from meteoric water. Fluid inclusion homogenization temperatures range between 74 degrees and 125 degrees C, which are lower than the 120 degrees to 160 degrees C range calculated from vitrinite reflectance and illite crystallinity data from the deposit. This discrepancy indicates that mineralization likely formed at 50 to 85 Mpa, corresponding to a depth of 1,900 to 3,100 m. Transgressive galena-sphalerite veins that cut stratiform mineralization at Century and breccia-filled quartz-dolomite-sphalerite-galena veins in the discordant Zn-Pb lodes have Pb model ages between 1575 and 1485 Ma. Raman spectroscopy and microthermometry reveal that the primary fluid inclusions in these veins contain Ca2+, Na+. but they have lower salinities between 23 and 10 wt percent NaCl equiv and higher delta D-fluid values ranging from -89 to -61 per mil than fluid inclusions in porous sphalerite from Century. Fluid inclusion water from sphalerite in one of the lode deposits has delta O-18(fluid) values of 1.6 and 2.4 per mil, indistinguishable from delta O-18(fluid) values between -0.3 to +7.4 per mil calculated from the isotopic composition of coexisting quartz, dolomite, and illite. The trend toward lower salinities and higher delta D-fluid values relative to the earlier mineralizing fluids is attributed to mixing between the fluid that formed Century and a seawater-derived fluid from a different source. Based on seismic data from the Lawn Hill platform and paragenetic and geochemical results from the Leichhardt River fault trough to the south, diagenetic aquifers in the Underlying Calvert superbasin appear to have been the most likely sources for the fluids that formed Century and the discordant lode deposits. Paragenetically late sphalerite and calcite cut sphalerite, quartz, and dolomite in the lode deposits and contain Na+-dominated fluid inclusions with much lower salinities than their older counterparts. The isotopic composition of calcite also indicates delta O-18(fluid) from 3.3 to 10.7 per mil, which is larger than the range obtained from synmineralization minerals, supporting the idea that a unique fluid source was involved. The absolute timing of this event is unclear, but a plethora of Pb model, K-Ar, and Ar-40/Ar-39 ages between 1440 and 1300 Ma indicate that a significant volume of fluid was mobilized at this time. The deposition of the Roper superbasin from ca. 1492 +/- 4 Ma suggests that these late veins formed from fluids that may have been derived from aquifers in overlying sediments of the Roper superbasin. Clear, buck, and drusy quartz in veins unrelated to any form of Pb-Zn mineralization record the last major fluid event in the Burketown mineral field and form distinct outcrops and ridges in the district. Fluid inclusions in these veins indicate formation from a low-salinity, 300 degrees +/- 80 degrees C fluid. Temperatures approaching 300 degrees C recorded in organic matter adjacent to faults and at sequence boundaries correspond to K-Ar ages spanning 1300 to 1100 Ma, which coincides with regional hydrothermal activity in the northern Lawn Hill platform and the emplacement of the Lakeview Dolerite at the time of assemblage of the Rodinia supercontinent.