134 resultados para Motor unit number estimates

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of number of samples and selection of data for analysis on the calculation of surface motor unit potential (SMUP) size in the statistical method of motor unit number estimates (MUNE) was determined in 10 normal subjects and 10 with amyotrophic lateral sclerosis (ALS). We recorded 500 sequential compound muscle action potentials (CMAPs) at three different stable stimulus intensities (10–50% of maximal CMAP). Estimated mean SMUP sizes were calculated using Poisson statistical assumptions from the variance of 500 sequential CMAP obtained at each stimulus intensity. The results with the 500 data points were compared with smaller subsets from the same data set. The results using a range of 50–80% of the 500 data points were compared with the full 500. The effect of restricting analysis to data between 5–20% of the CMAP and to standard deviation limits was also assessed. No differences in mean SMUP size were found with stimulus intensity or use of different ranges of data. Consistency was improved with a greater sample number. Data within 5% of CMAP size gave both increased consistency and reduced mean SMUP size in many subjects, but excluded valid responses present at that stimulus intensity. These changes were more prominent in ALS patients in whom the presence of isolated SMUP responses was a striking difference from normal subjects. Noise, spurious data, and large SMUP limited the Poisson assumptions. When these factors are considered, consistent statistical MUNE can be calculated from a continuous sequence of data points. A 2 to 2.5 SD or 10% window are reasonable methods of limiting data for analysis. Muscle Nerve 27: 320–331, 2003

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anterior knee pain (AKP) is common and has been argued to be related to poor patellofemoral joint control due to impaired coordination of the vasti muscles. However, there are conflicting data. Changes in motor unit firing may provide more definitive evidence. Synchronization of motor unit action potentials (MUAPs) in vastus medialis obliquus (VMO) and vastus lateralis (VL) may contribute to coordination in patellofemoral joint control. We hypothesized that synchronization may be reduced in AKP. Recordings of single MUAPs were made from VMO and multiunit electromyograph (EMG) recordings were made from VL. Averages of VL EMG recordings were triggered from the single MUAPs in VMO. Motor units in VL firing in association with the VMO motor units would appear as a peak in the VL EMG average. Data were compared to previous normative data. The proportion of trials in which a peak was identified in the triggered averages of VL EMG was reduced in people with AKP (38%) compared to controls (90%). Notably, although 80% of subjects had values less than controls, 20% were within normal limits. These results provide new evidence that motor unit synchronization is modified in the presence of pain and provide evidence for motor control dysfunction in AKP. Perspective: This study shows that coordination of motor units between the medial and lateral vasti muscles in people with anterior knee pain is reduced compared to people without knee pain. It confirms that motor control dysfunction is a factor in this condition and has implications for selection of rehabilitation strategies. (c) 2005 by the American Pain Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Accurate neuromuscular control of the patellofemoral joint is important in knee joint mechanics. Strategies to coordinate the vasti muscles, such as motor unit synchronization, may simplify control of patellar tracking. This study investigated motor unit synchronization between vastus medialis (VM) and lateralis (VL). Methods: Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VM and single- and multi-unit recordings were made from VL. Synchronization was quantified from peaks in the cross-correlogram generated from single MUAP pairs in VL and VM. The proportion of motor units in VM with synchronized firing in VL was also quantified from peaks in averages of multiunit VL EMG triggered from the VM MUAP. Results: A high degree of synchronization of motor unit firing between VM and VL was identified. Results were similar for cross-correlation (similar to 45% of cases) and triggered averages (similar to 41% of cases). Conclusions: The data suggest that synchronization between VM and VL is higher than expected. Agreement between traditional cross-correlation and triggered averaging methods suggest that this new technique may provide a more clinically viable method to quantify synchronization. Significance: High synchronization between VM and VL may provide a solution to simplify control of the mechanically unstable patellofemoral joint. (c) 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate motor unit synchronization between medial and lateral vasti and whether such synchronization differs in closed and open chain tasks. Design: Electromyographic recordings of single motor unit action potentials were made from the vastus medialis obliquus (VMO) and multiunit recordings from vastus lateralis during isometric contractions at 30 degrees of knee flexion in closed and open chain conditions. Setting: Laboratory. Participants: Five volunteers with no history of knee pain (age, 30 +/- 3.32y). Interventions: Not applicable. Main Outcome Measure: The degree of synchronization between motor unit firing was evaluated by identifying peaks in the electromyographic averages of the vastus lateralis, triggered from motor unit action potentials in the VMO, and the proportion of power in the power spectral density of the triggered average at the firing frequency of the reference motor unit. The proportion of cases in which there was significant power and peaks in the triggered averages was calculated. Results: The proportion of trials with peaks in the triggered averages of the vastus lateralis electromyographic activity was greater than 61.5% in all tasks, and there was a significantly greater proportion of cases where power in the spectrum was greater than 7.5% (P = .01) for the closed chain condition. Conclusions: There was a high proportion of synchronized motor units between the 2 muscles during isometric contractions, with evidence for greater common drive between the VMO and vastus lateralis in closed chain tasks. This has implications for rehabilitation because it suggests that closed chain tasks may generate better coordination between the vasti muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activity of the vasti has been argued to vary through knee range of movement due to changes in passive support of the patellofemoral joint and the relative contribution of these muscles to knee extension. Efficient function of the knee is dependent on optimal control of the patellofemoral joint, largely through coordinated activity of the medial and lateral quadriceps. Motor unit synchronization may provide a mechanism to coordinate the activity of vastus medialis (VMO) and vastus lateralis (VL), and may be more critical in positions of reduced passive support for the patellofemoral joint (i.e., full extension). Therefore, the aim of this study was to determine whether the degree of motor unit synchronization between the vasti muscles is dependent on joint angle. Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VMO and multiunit recordings from VL during isometric contractions of the quadriceps at 0 degrees, 30 degrees, and 60 degrees of knee flexion. The degree of synchronization between motor unit firing was evaluated by identification of peaks in the rectified EMG averages of VL, triggered from MUA-Ps in VMO. The proportion of cases in which there was a significant peak in the triggered averages was calculated. There was no significant difference in the degree of synchronization between the vasti at different knee angles (p = 0.57). These data suggest that this basic coordinative mechanism between the vasti muscles is controlled consistently throughout knee range of motion, and is not augmented at specific angles where the requirement for dynamic control of stability is increased. (D 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor neuron disease (MND) is characterised by progressive deterioration of the corticospinal tract, brainstem, and anterior horn cells of the spinal cord. There is no pathognomonic test for the diagnosis of MND, and physicians rely on clinical criteria-upper and lower motor neuron signs-for diagnosis. The presentations, clinical phenotypes, and outcomes of MND are diverse and have not been combined into a marker of disease progression. No single algorithm combines the findings of functional assessments and rating scales, such as those that assess quality of life, with biological markers of disease activity and findings from imaging and neurophysiological assessments. Here, we critically appraise developments in each of these areas and discuss the potential of such measures to be included in the future assessment of disease progression in patients with MND.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and,27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P < 0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been believed that resistance training is accompanied by changes within the nervous system that play an important role in the development of strength. Many elements of the nervous system exhibit the potential for adaptation in response to resistance training, including supraspinal centres, descending neural tracts, spinal circuitry and the motor end plate connections between motoneurons and muscle fibres. Yet the specific sites of adaptation along the neuraxis have seldom been identified experimentally, and much of the evidence for neural adaptations following resistance training remains indirect. As a consequence of this current lack of knowledge, there exists uncertainty regarding the manner in which resistance training impacts upon the control and execution of functional movements. We aim to demonstrate that resistance training is likely to cause adaptations to many neural elements that are involved in the control of movement, and is therefore likely to affect movement execution during a wide range of tasks. We review a small number of experiments that provide evidence that resistance training affects the way in which muscles that have been engaged during training are recruited during related movement tasks. The concepts addressed in this article represent an important new approach to research on the effects of resistance training. They are also of considerable practical importance, since most individuals perform resistance training in the expectation that it will enhance their performance in-related functional tasks.