206 resultados para Mort Creek Site Complex

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of cyanocobalamin (CNCbl, vitamin 1312) on hepatitis C virus internal ribosome entry site (HCV IRES)-dependent initiation of translation was studied by ribosomal toeprinting and sucrose gradient centrifugation analysis. These results suggested that CNCbl did not inhibit HCV IRES-dependent translation by a competitive binding mechanism. CNCbl allowed 80 S elongation complex formation on the mRNA, but stalled the initiation at that point, effectively trapping the 80 S ribosomal complexes on the HCV TRES. CNCbl had no effect on cap-dependent mRNA, consistent with the known mRNA specificity of this translational inhibitor. To help elucidate the mechanism, comparative data were collected for the well-characterised translation inhibitors cycloheximide and 5'-guanylyl-imidophosphate, Although CNCbl stalled HCV IRES-dependent translation at approximately the same step in initiation as cycloheximide, the mechanisms of these two inhibitors are distinct. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trinuclear copper(II) complex of a new polyamino alcohol ligand has been isolated; it exhibits a structure similar to that found at the active site of ascorbate oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Tev sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. Ln support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the Rm-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until now, it has been unclear whether murine cytomegalovirus (MCMV)-encoded protein m144 directly regulates natural killer (NK) cell effector function and whether the effects of m144 are only strictly evident in the context of MCMV infection. We have generated clones of the transporter associated with antigen processing (TAP)-2-deficient RMA-S T lymphoma cell line and its parent cell line, RMA, that stably express significant and equivalent levels of m144. In vivo NK cell-mediated rejection of RMA-S-m144 lymphomas was reduced compared with rejection of parental or mock-transfected RMA-S clones, indicating the ability of m144 to regulate NK cell-mediated responses in vivo. Significantly, the accumulation of NK cells in the peritoneum was reduced in mice challenged with RMA-S-m144, as was the lytic activity of NK cells recovered from the peritoneum. Expression of m144 on RMA-S cells also conferred resistance to cytotoxicity mediated in vitro by interleukin 2-activated adherent spleen NK cells. In summary, the data demonstrate that m144 confers some protection from NK cell effector function mediated in the absence of target cell class I expression, but that in vivo the major effect of m144 is to regulate NK cell accumulation and activation at the site of immune challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautrophicum at 2.0 Angstrom resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta -strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta -sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis. (C) 2001 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, Terl, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of Terl causes the DNA to become slightly unwound and bent by similar to 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to similar to 60 degrees. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner, in the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry at the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DsbA is a protein-folding catalyst from the periplasm of Escherichia coli that interacts with newly translocated polypeptide substrate and catalyzes the formation of disulfide bonds in these secreted proteins. The precise nature of the interaction between DsbA and unfolded substrate is not known. Here, we give a detailed analysis of the DsbA crystal structure, now refined to 1.7 Angstrom, and present a proposal for its interaction with peptide. The crystal structure of DsbA implies flexibility between the thioredoxin and helical domains that may be an important feature for the disulfide transfer reaction. A hinge point for domain motion is identified-the typo IV beta-turn Phe 63-Met 64-Gly 65-Gly 66, which connects the two domains. Three unique features on the active site surface of the DsbA molecule-a groove, hydrophobic pocket, and hydrophobic patch-form an extensive uncharged surface surrounding the active-sits disulfide. Residues that contribute to these surface features are shown to be generally conserved in eight DsbA homologues. Furthermore, the residues immediately surrounding the active-site disulfide are uncharged in all nine DsbA proteins. A model for DsbA-peptide interaction has been derived from the structure of a human thioredoxin:peptide complex. This shows that peptide could interact with DsbA in a manner similar to that with thioredoxin. The active-site disulfide and all three surrounding uncharged surface features of DsbA could, in principle, participate in the binding or stabilization of peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass spectrometric U-series dating of speleothems from Tangshan Cave, combined with ecological and paleoclimatic evidence, indicates that Nanjing Man, a typical Homo erectus morphologically correlated with Peking Man at Zhoukoudian, should be at least 580 k.y. old, or more likely lived during the glacial oxygen isotope stage 16 (similar to 620 ka). Such an age estimate, which is similar to 270 ka older than previous electron spin resonance and alpha counting U-series dates, has significant implications for the evolution of Asian H. erectus. Dentine and enamel samples from the coexisting fossil layer yield significantly younger apparent ages, that of the enamel sample being only less than one-fourth of the minimum age of Nanjing Man. This suggests that U uptake history is far more complex than existing models can handle. As a result, great care must be taken in the interpretation of electron spin resonance and U-series dates of fossil teeth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized absorption and emission spectra of trigonal single crystals of an Er(III) complex coordinated to a heptadentate tripodal ligand are reported at temperatures between 8 and 298 K. The assigned energy levels below the onset of ligand absorption (< 25 000 cm(-1)) are fitted to a parametrized electronic Hamiltonian. The C-3 site symmetry of the Er(HI) ion requires eight parameters for a full description of the ligand field within a one-electron operator description. This compound shows unusually large splittings of the multiplets, and the fitted parameters imply that this heptadentate ligand imparts the largest ligand field reported for an Er(III) complex. The ligand field was also interpreted within the angular overlap model (AOM). We derive the AOM matrix to include both sigma and anisotropic pi bonding and show that a useful description of the C-3 ligand field can be made using only five parameters. The success of the AOM description is encouraging for applications on isomorphous complexes within the lanthanide series and in describing the ligand field of low-symmetry complexes with less parameters than in the usual spherical harmonic expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectroscopy has been used to investigate the structure of the molybdenum cofactor in DMSO reductase from Rhodobacter capsulatus. Three oxidized forms of the enzyme, designated 'redox cycled', 'as prepared', and DMSORmodD, have been studied using 752 nm laser excitation. In addition, two reduced forms of DMSO reductase, prepared either anaerobically using DMS or using dithionite, have been characterized. The 'redox cycled' form has a single band in the Mo=O stretching region at 865 cm(-1) consistent with other studies. This oxo ligand is found to be exchangeable directly with (DMSO)-O-18 or by redox cycling. Furthermore, deuteration experiments demonstrate that the oxo ligand in the oxidized enzyme has some hydroxo character, which is ascribed to a hydrogen bonding interaction with Trp 116. There is also evidence from the labeling studies for a modified dithiolene sulfur atom, which could be present as a sulfoxide. In addition to the 865 cm(-1) band, an extra band at 818 cm(-1) is observed in the Mo=O stretching region of the 'as prepared' enzyme which is not present in the 'redox cycled' enzyme. Based on the spectra of unlabeled and labeled DMS reduced enzyme, the band at 818 cm(-1) is assigned to the S=O stretch of a coordinated DMSO molecule. The DMSORmodD form, identified by its characteristic Raman spectrum, is also present in the 'as prepared' enzyme preparation but not after redox cycling. The complex mixture of forms identified in the 'as prepared' enzyme reveals a substantial degree of active site heterogeneity in DMSO reductase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to Generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K-m toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K-m was lower for both substrates in the mutant enzyme. The Y114F mutant, as isolated, was able to oxidize dimethyl sulfide with phenazine ethosulfate as the electron acceptor but with a lower k(cat) than that of the native enzyme. The pH optimum of dimethyl sulfide: acceptor oxidoreductase activity in the Y114F mutant was shown to be shifted by +1 pH unit compared to the native enzyme. The Y114F mutant did not form a pink complex with dimethyl sulfide, which is characteristic of the native enzyme. The mutant enzyme showed a large increase in the K-d for DMS. Direct electrochemistry showed that the Mo(V)/Mo(IV) couple was unaffected by the Y114F mutant, but the midpoint potential of the Mo(VI)/Mo(V) couple was raised by about 50 mV. These data confirm that the Y114 residue plays a critical role in oxidation-reduction processes at the molybdenum active site and in oxygen atom transfer associated with sulfoxide reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phototrophic purple non-sulfur bacterium Rhodobacter capsulatus expresses a wide variety of complex redox proteins in response to changing environmental conditions. Here we report the construction and evaluation of an expression system for recombinant proteins in that organism which makes use of the dor promoter from the same organism. A generic expression vector, pDorEX, was constructed and used to express sulphite:cytochrome c oxidoreductase from Starkeya novella, a heterodimeric protein containing both molybdenum and haem c. The recombinant protein was secreted to the periplasm and its biochemical properties were very similar to those of the native enzyme. The pDorEX system therefore seems to be potentially useful for heterologous expression of multi-subunit proteins containing complex redox cofactors. (C) 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.