74 resultados para Molecular systematics and phylogenetics
em University of Queensland eSpace - Australia
Resumo:
Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.
Resumo:
The scale insect genus Calycicoccus Brain has a single described species, C. merwei Brain, which is endemic to southeastern South Africa. Females of C. merwei induce small, mostly conical galls on the foliage of their host tree, Apodytes dimidiata E. Meyer ex Arn. (Icacinaceae), which has a wider, mostly coastal distribution, than that currently known for the scale insect. Calycicoccus has been placed in the family Eriococcidae and may be related to the South American genus Aculeococcus Lepage. No other native eriococcid species have been described so far in South Africa, although the family is diverse in other Gondwanan regions. This paper summarizes the biology of C. merwei, redescribes the adult female, describes the adult male, the second-instar female and the first-instar nymphs for the first time, and reconsiders the phylogenetic relationships of the genus. The adult female is shown to have unusual abdominal segmentation, in that segment I is present both dorsally and ventrally, but a segment is absent ventrally on the middle abdomen. First-instar nymphs are sexually dimorphic; males have a larger and relatively narrower body, larger mouthparts, longer antennae and legs, and more thoracic dorsal setae compared with females. Molecular data from nuclear small-subunit ribosomal DNA (18S) and elongation factor 1 alpha (EF-1a) show C. merwei to have no close relatives among the Eriococcidae sampled to date. Instead, the Calycicoccus lineage is part of a polytomy near the base of the Eriococcidae. Molecular dating of the node suggests that the Calycicoccus lineage diverged from other eriococcids more than 100 Mya. These data support the placement of Calycicoccus as the only genus in the subfamily Calycicoccinae Brain.
Resumo:
The landscape of the Australian Wet Tropics can be described as islands of montane rainforest Surrounded by warmer or more xeric habitats. Historical glaciation cycles have caused expansion and contraction of these rainforest islands leading to consistent patterns of genetic divergence within species of vertebrates. To explore whether this dynamic history has promoted speciation in endemic and diverse groups Of insects, we used a combination of mtDNA sequencing and morphological characters to estimate relationships and the tempo of divergence among Australian representatives of the dung beetle genus Temnoplectron. This phylogenetic hypothesis shares a number of well-supported clades with a previously published phylogenetic hypothesis based on morphological data. though statistical support for several nodes is weak. Sister species relationships well-supported in both tree topologies. and a tree obtained by combining the two data sets. suggest that speciation has mostly been allopatric. We identify a number of speciation barriers, which coincide with phylogeographic breaks found in vertebrate species. Large sequence divergences between species emphasize that speciation events are ancient (pre-Pleistocene). The flightless, rainforest species appear to have speciated rapidly. but also in the distant past. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A clone encoding ovine preprogastrin was isolated from a sheep genomic library. The deduced 104 amino acid sequence of ovine preprogastrin was 92% and 68% identical to the sequences of bovine and human preprogastrin, respectively. While the similarity was greatest in the gastrin-17 sequence, an unexpected similarity was also observed in the N-terminus of mature progastrin.
Resumo:
We have previously isolated and characterized murine MYB binding protein (p160) 1a, a protein that specifically interacts with the leucine zipper motif within the negative regulatory domain of the c-Myb proto-oncoprotein, We now describe the molecular cloning of the human MYBBP1A cDNA and chromosomal localization to 17p13.3 by fluorescence in situ hybridization analysis, Given the likely presence of a tumor suppressor gene (or genes) within this region of chromosome 17, the position of MYBBP1A was further mapped by radiation hybrid analysis and was found to lie between markers D17S1828 and D17S938. A P1 artificial chromosome clone containing the 5' region of MYBBP1A was isolated and indicates a physical linkage between MYBBP1A and the 15-lipoxygenase gene (ALOX15), A novel, polymorphic (CA)(25) dinucleotide repeat was also isolated from this PAC and may serve as a useful marker for MYBBP1A and this region of chromosome 17. (C) 1999 Academic Press.
Resumo:
Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this three-finger toxin toolkit will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.
Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
Cobalamins are stored in high concentrations in the human liver and thus are available to participate in the regulation of hepatotropic virus functions. We show that cyanocobalamin (vitamin B12) inhibited the H(IV internal ribosome entry site (IRES)-dependent translation of a reporter gene in vitro in a dose-dependent manner without significantly affecting the cap-dependent mechanism. Vitamin B12 failed to inhibit translation by IRES elements from encephalomyocarditis virus (EMCV) or classical swine fever virus (CSFV), We also demonstrate a relationship between the total cobalamin concentration in human sera and HCV viral load (a measure of viral replication in the host), The mean viral load was two orders of magnitude greater when the serum cobalamin concentration was above 200 pM (P < 0.003), suggesting that the total cobalamin concentration in an HCV-infected liver is biologically significant in HCV replication.