24 resultados para Molecular Sequence Data

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and can induce cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing or feminization in their hosts. Here, we report phylogenetic relationships of Wolbachia in tephritid fruit flies based on wsp gene sequences. We also report, for the first time, five distinct strains of Wolbachia in Bactrocera ascita sp. B. Four of the five Wolbachia strains found in this species were in the same groups as those found in other tephritid fruit flies, suggesting possible horizontal transmission of Wolbachia from other fruit flies into B. ascita sp. B. The unreliability of wsp-specific group primers demonstrated in this study suggests that these primers might be useful only for preliminary identification of Wolbachia. Final determination of group affiliation needs to be verified with wsp sequence data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phylogenetic relationships among 75 species of Lentibulariaceae, representing the three recognized genera, were assessed by cladistic analysis of DNA sequences from the plastid rps16 intron and the trnL-F region. Sequence data from the two loci were analyzed both separately and in combination. Consensus trees from all analyses are congruent, and parsimony jackknife results demonstrate strong support for relationships both between and within each of the three demonstrably monophyletic genera. The genus Pinguicula is sister to a Genlisea-Utricularia clade, the phylogenetic structure within this clade closely follows Taylor's recent sectional delimitations based on morphology. Three principal clades are shown within Utricularia, with the basal sections Polypoinpholyx and Pleiochasia together forming the sister lineage of the remaining Utricularia species. Of the fundamental morphological specializations, the stoloniferous growth form apparently arose independently within Genlisea and Utricularia three times, and within Utricularia itself, perhaps more than once. The epiphytic habit has evolved independently at least three times, in Pinguicula, in Utricularia section Phyllaria, and within the two sections Orchidioides and Iperua (in the latter as bromeliad tank-epiphytes). The suspended aquatic habit may have evolved independently within sections Utricularia and Vesiculina. Biogeographic optimization on the phylogeny demonstrates patterns commonly associated with the boreotropics hypothesis and limits the spatial origin of Lentibulariaceae to temperate Eurasia or tropical America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular evolution has been considered to be essentially a stochastic process, little influenced by the pace of phenotypic change. This assumption was challenged by a study that demonstrated an association between rates of morphological and molecular change estimated for total-evidence phylogenies, a finding that led some researchers to challenge molecular date estimates of major evolutionary radiations. Here we show that Omland's (1997) result is probably due to methodological bias, particularly phylogenetic nonindependence, rather than being indicative of an underlying evolutionary phenomenon. We apply three new methods specifically designed to overcome phylogenetic bias to 13 published phylogenetic datasets for vertebrate taxa, each of which includes both morphological characters and DNA sequence data. We find no evidence of an association between rates of molecular and morphological rates of change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous studies have shown that two distinct genotypes of Sindbis (SIN) virus occur in Australia. One of these, the Oriental/Australian type, circulates throughout most of the Australian continent, whereas the recently identified south-west (SW) genetic type appears to be restricted to a distinct geographic region located in the temperate south-west of Australia. We have now determined the complete nucleotide and translated amino acid sequences of a SW isolate of SIN virus (SW6562) and performed comparative analyses with other SIN viruses at the genomic level. The genome of SW6562 is 11,569 nucleotides in length, excluding the cap nucleotide and poly (A) tail. Overall this virus differs from the prototype SIN virus (strain AR339) by 23% in nucleotide sequence and 12.5% in amino acid sequence. Partial sequences of four regions of the genome of four SW isolates were determined and compared with the corresponding sequences from a number of SIN isolates from different regions of the World. These regions are the non-structural protein (nsP3), the E2 gene, the capsid gene, and the repeated sequence elements (RSE) of the 3'UTR. These comparisons revealed that the SW SIN viruses were more closely related to South African and European strains than to other Australian isolates of SIN virus. Thus the SW genotype of SIN virus may have been introduced into this region of Australia by viremic humans or migratory birds and subsequently evolved independently in the region. The sequence data also revealed that the SW genotype contains a unique deletion in the RSE of the 3'UTR region of the genome. Previous studies have shown that deletions in this region of the SIN genome can have significant effects on virus replication in mosquito and avian cells, which may explain the restricted distribution of this genotype of SIN virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tropical abalone. Haliotis asinina. is,in ideal species to investigate the molecular mechanisms that control development. growth, reproduction and shell formation in all cultured haliotids. Here we describe the analysis of 232 expressed sequence tags (EST) obtained front a developmental H. asinina cDNA library intended for future microarray studies. From this data set we identified 183 unique gene Clusters. Of these, 90 clusters showed significant homology with sequences lodged in GenBank, ranging in function from general housekeeping to signal transduction, gene regulation and cell-cell communication. Seventy-one clusters possessed completely novel ORFs greater than 50 codons in length, highlighting the paucity of sequence data from molluscs and other lophotrochozoans. This study of developmental gene expression in H. asinina provides the foundation for further detailed analyses of abalone growth, development and reproduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A molecular approach was used to genetically characterize 5 species (Aoruroides queenslandensis. Blattophila sphaerolaima, Cordonicola gibsoni, Desmicola ornato and Leidynemella fusiformis) belonging to the superfamily. Thelastomatoidea fi (Nematoda: Oxyurida), a group of pinworms that parasitizes terrestrial arthropods. The D3 domain of the large subunit Of nuclear ribosomal RNA (LSU) was sequenced for individual specimens, and the analysis of the sequence data allowed the genetic relationships of the 5 species to be studied dagger. The sequence variation in the D3 domain within individual species (0-1-8%) was significantly less than the differences among species (4(.)3-12(.)4%). Phylogenetic analyses, Using maximum parsimony, maximum likelihood, and neighbour-joining, tree-building methods, established relationships among the 5 species of Thelastomatoidea and Oxyuris equi (a species of the order Oxyurida). The molecular approach employed provides the prospect for developing DNA tools for the specific identification of the Thelastomatoidea, irrespective of developmental stage and sex, as a basis for systematic, ecological and/or population genetic investigations of members within this superfamily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA approaches are now being used routinely for accurate identification of Echinococcus and Taenia species, subspecies and strains, and in molecular epidemiological surveys of echinococcosis/taeniasis in different geographical settings and host assemblages. The publication of the complete sequences of the mitochondrial (int) genomes of E. granulosus, E. multilocularis, T solium and Asian Taenia, and the availability of mtDNA sequences for a number of other taeniid genotypes, has provided additional genetic information that can be used for more in depth phylogenetic and taxonomic studies of these parasites. This very rich sequence information has provided a solid molecular basis, along with a range of different biological, epidemiological, biochemical and other molecular-genetic criteria, for revising the taxonomy of the genus Echinococcus and for estimating the evolutionary time of divergence of the various taxa. Furthermore, the accumulating genetic data has allowed the development of PCR-based tests for unambiguous identification of Echinococcus eggs in the faeces of definitive hosts and in the environment. Molecular phylogenies derived from mtDNA sequence comparisons of geographically distributed samples of T solium provide molecular evidence for two genotypes, one being restricted to Asia, with the other occurring in Africa and America. Whether the two genetic forms of T solium differ in important phenotypic characteristics remains to be determined. As well, minor DNA sequence differences have been reported between isolates of T saginata and Asian Taenia. There has been considerable discussion over a number of years regarding the taxonomic position of Asian Taenia and whether it should be regarded as a genotype, strain, subspecies or sister species of T saginata. The available molecular genetic data do not support independent species status for Asian Taenia and T saginata. What is in agreement is that both taxa are closely related to each other but distantly related to T solium. This is important in public health terms as it predicts that cysticercosis in humans attributable to Asian Taenia does not occur, because cysticercosis is unknown in T saginata. (C) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We recently evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach in delineating breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We previously evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach to delineate breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Butterflyfish are colourful, pan-tropical coastal fish that are important and distinctive members of coral reef communities. A successful systematic scheme and a robust phylogeny is considered essential in understanding further their biogeography and ecology, although recent cladistic treatments of butterflyfish phylogeny, based on soft tissue and bone morphology and coded at the generic and subgeneric levels, differ in character coding and subsequently tree topology. This study provides an independent test of the morphologically based hypotheses, using molecular systematic data from two partial mitochondrial gene fragments, cytochrome b (cytb) and small subunit rRNA (rrnS), for 52 ingroup chaetodontids and seven pomacanthids used to root the molecular trees. Individual gene trees were largely compatible and a combined molecular phylogeny, inferred from Bayesian analysis, was used to test alternative hypotheses suggested by morphological analyses. The tree was also used to map the latest morphological matrix in order to evaluate potential synapomorphies for various nodes defining butterflyfish interrelationships. A clade comprised of Chelmon and Coradion was sister group to other chaetodontids. Heniochus and Hemitaurichthys were each resolved as monophyletic groups, and as sister taxa Of the taxa sampled, Prognothodes was resolved as the sister genus to Chaeotodon. Of the ten Chaetodon subgenera sampled, all were monophyletic but their interrelationships differed significantly from that inferred from morphological characters. Lepidochaetodon was the most basal subgenus followed by Exornator and the remaining subgenera. Molecular data support the sister group relationship between Corallochaetodon and Citharoedus suggested by morphology, but major differences occur among the remaining more derived taxa. Chaetodon trifascialis and C. oligacanthus were resolved as sister taxa adding weight to the inclusion of the latter in C. Megaprotodon. Of those pairs of taxa known to hybridize and sampled with molecular data, all were closely related phylogenetically, except those hybrids known to occur in the Rabdophorus subgenus. Two base changes separated C. pelewensis from C. paucifasciatus which have been regarded previously as a single species. Cytb provided greater resolution than rrnS and will likely provide additional resolution with greater taxon sampling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phylogenetic hypotheses are presented for Pultenaea based on cpDNA (trnL-F and ndhF) and nrDNA ( ITS) sequence data. Pultenaea, as it is currently circumscribed, comprises six strongly supported lineages whose relationships with each other and 18 closely related genera are weak or conflicting among datasets. The lack of resolution among the six Pultenaea clades and their relatives appears to be the result of a rapid radiation, which is evident in molecular data from both the chloroplast and nuclear genomes. The molecular data provide no support for the monophyly of Pultenaea as it currently stands. Given these results, Pultenaea could split into many smaller genera. We prefer the taxonomically stable alternative of subsuming all 19 genera currently recognised in Pultenaea sensu lato (= the Mirbelia group) into an expanded concept of Pultenaea that would comprise similar to 470 species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The comparative method, the inference of biological processes from phylogenetic patterns, is founded on the reliability of the phylogenetic tree. In attempting to apply the comparative method to the understanding of the evolution of parasitism in the phylum Platyhelminthes, we have highlighted several points we consider to be of value along with many problems. We discuss four of these topics. Firstly, we view the group at a phylum level, in particular discussing the importance of establishing the sister taxon to the obligate parasite group, the Neodermata, for addressing such questions as the monophyly, parasitism or the endo or ectoparasitic nature of the early parasites. The variety of non-congruent phylogenetic trees presented so far, utilising either or both morphological and molecular data, gives rise to the suggestion that any evolutionary scenarios presented at this stage be treated as interesting hypotheses rather than well-supported theories. Our second point of discussion is the conflict between morphological and molecular estimates of monogenean evolution. The Monogenea presents several well-established morphological autapomorphies, such that morphology consistently estimates the group as monophyletic, whereas molecular sequence analyses indicate paraphyly, with different genes giving different topologies. We discuss the problem of reconciling gene and species trees. Thirdly, we use recent phylogenetic results on the tapeworms to interpret the evolution of strobilation, proglottization, segmentation and scolex structure. In relation to the latter, the results presented indicate that the higher cestodes are diphyletic, with one branch difossate and the other tetrafossate. Finally, we use a SSU rDNA phylogenetic tree of the Trematoda as a basis for the discussion of an aspect of the digenean life-cycle, namely the nature of the first intermediate host. Frequent episodes of host-switching, between gastropod and bivalve hosts or even into annelids, are indicated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trypanosome infections are often difficult to detect by conventional microscopy and their pleomorphy often confounds differential diagnosis. Molecular techniques are now being used to diagnose infections and to determine phylogenetic relationships between species. Complete small subunit rRNA gene sequences were determined for isolates of Trypanosoma chelodina from the Brisbane River tortoise (Emydura signata), the saw-shelled tortoise (Elseya latisternum), and the eastern snake-necked tortoise (Chelodina longicollis) from southeast Queensland, Australia. Partial sequence data were also obtained for T. binneyi from a platypus (Ornithorhynchus anatinus) from Tasmania. Phylogenetic relationships between T. chelodina, T. binneyi and other species were examined by maximum parsimony and likelihood methods. The Australian tortoise and platypus trypanosomes did not exhibit any close phylogenetic relationships with those of mammals, reptiles or amphibians, but were closely related to each other, and to fish trypanosomes. This contra-indicates their co-evolution with their vertebrate hosts but does not exclude co-evolution with different groups of invertebrate vectors, notably insects and leeches.