7 resultados para Molecular Diagnosis
em University of Queensland eSpace - Australia
Resumo:
The identification of biomarkers capable of providing a reliable molecular diagnostic test for prostate cancer (PCa) is highly desirabie clinically. We describe here 4 biomarkers, UDP-N-Acetyl-alpha-D-galactosamine transferase (GalNAc-T3; not previously associated with PCa), PSMA, Hepsin and DD3/PCA3, which, in combination, distinguish prostate cancer from benign prostate hyperplasia (BPH). GalNAc-T3 was identified as overexpressed in PCa tissues by microarray analysis, confirmed by quantitative real-time PCR and shown immunohistochemically to be localised to prostate epithelial cells with higher expression in malignant cells. Real-time quantitative PCR analysis across 21 PCa and 34 BPH tissues showed 4.6-fold overexpression of GalNAc-T3 (p = 0.005). The noncoding mRNA (DD3/PCA3) was overexpressed 140-fold (p = 0.007) in the cancer samples compared to BPH tissues. Hepsin was overexpressed 21-fold (p = 0.049, whereas the overexpression for PSMA was 66-fold (p = 0.047). When the gene expression data for these 4 biomarkers was combined in a logistic regression model, a predictive index was obtained that distinguished 100% of the PCa samples from all of the BPH samples. Therefore, combining these genes in a real-time PCR assay represents a powerful new approach to diagnosing PCa by molecular profiling. (c) 2005 Wiley-Liss, Inc.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
We report genetic characterization of isochromosome 18p using a combination of cytogenetic and molecular genetic methods, including multiplex fluorescent PCR. The patient was referred for chorionic villus sampling (CVS) due to advanced maternal age and maternal anxiety. The placental karyotype was 47,XX,+mar, with the marker having the appearance of a small supernumerary isochromosome. Because differentiating between isochromosomes and other structural rearrangements is normally very difficult, a variety of genetic tests including fluorescence in situ hybridization (FISH), PCR, and multiplex fluorescent PCR were undertaken to determine chromosomal origin and copy number and, thus, allow accurate diagnosis of the corresponding syndrome. FISH determined that the marker chromosome contained chromosome 18 material. PCR of a variety of short tandem repeats (STRs) confirmed that there was at least one extra copy of the maternal 18p material. However, neither FISH nor PCR could accurately determine copy number. Multiplex fluorescent PCR (MF-PCR) of STRs simultaneously determined that: (1) the marker included 18p material; (2) the marker was maternal in origin; (3) allele copy number indicated tetrasomy; and (4) contamination of the sample could be ruled out. Results were also rapid with accurate diagnosis of the syndrome tetrasomy 18p possible within 5 hours.
Resumo:
Immunohistochemical analysis of E-cadherin has changed the way lobular neoplasia is perceived. It has helped to classify difficult cases of carcinoma in situ with indeterminate features and led to the identification of new variants of lobular carcinoma. Pleomorphic lobular carcinoma (PLC) and pleomorphic lobular carcinoma in situ (PLCIS), recently described variants of invasive and in situ classic lobular carcinoma, are reported to be associated with more aggressive clinical behaviour. Although PLC/PLCIS show morphological features of classic lobular neoplasia and lack E-cadherin expression, it is still unclear whether these lesions evolve through the same genetic pathway as lobular carcinomas or are high-grade ductal neoplasms that have lost E-cadherin. Here we have analysed a case of extensive PLCIS and invasive PLC associated with areas of E-cadherin-negative carcinoma in situ with indeterminate features, using immunohistochemistry, chromogenic in situ hybridization, high-resolution comparative genomic hybridization (CGH) and array-based CGH. We observed that all lesions lacked E-cadherin and beta-catenin and showed gain of 1q and loss of 16q, features that are typical of lobular carcinomas but are not seen in high-grade ductal lesions. In addition, amplifications of c-myc and HER2 were detected in the pleomorphic components, which may account for the high-grade features in this case and the reported aggressive clinical behaviour of these lesions. Taken together, these data suggest that at least some PLCs may evolve from the same precursor or through the same genetic pathway as classic lobular carcinomas. Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Columnar cell lesions (CCLs) of the breast are a spectrum of lesions that have posed difficulties to pathologists for many years, prompting discussion concerning their biologic and clinical significance. We present a study of CCL in context with hyperplasia of usual type (HUT) and the more advanced lesions ductal carcinoma in situ (DCIS) and invasive ductal carcinoma. A total of 81 lesions from 18 patients were subjected to a comprehensive morphologic review based upon a modified version of Schnitt's classification system for CCL, immunophenotypic analysis (estrogen receptor [ER], progesterone receptor [PgR], Her2/neu, cytokeratin 5/6 [CK5/6], cytokeratin 14 [CK14], E-cadherin, p53) and for the first time, a whole genome molecular analysis by comparative genomic hybridization. Multiple CCLs from 3 patients were studied in particular detail, with topographic information and/or showing a morphologic spectrum of CCL within individual terminal duct lobular units. CCLs were ER an PgR positive, CK5/6 and CK14 negative, exhibit low numbers of genetic alterations and recurrent 16q loss, features that are similar to those of low grade in situ and invasive carcinoma. The molecular genetic profiles closely reflect the degree of proliferation and atypia in CCL, indicating some of these lesions represent both a morphologic and molecular continuum. In addition, overlapping chromosomal alterations between CCL and more advanced lesions within individual terminal duct lobular units suggest a commonality in molecular evolution. These data further support the hypothesis that CCLs are a nonobligate, intermediary step in the development of some forms of low grade in situ and invasive carcinoma. Copyright: © 2005 Lippincott Williams & Wilkins, Inc.
Resumo:
Twelve years ago our understanding of ratoon stunting disease (RSD) was confined almost exclusively to diagnosis of the disease and control via farm hygiene, with little understanding of the biology of the interaction between the causal agent (Leifsonia xyli subsp. xyli) and the host plant sugarcane (Saccharum spp. hybrids). Since then, research has focused on developing the molecular tools to dissect L. xyli subsp. xyli, so that better control strategies can be developed to prevent losses from RSD. Within this review, we give a brief overview of the progression in research on L. xyli subsp. xyli and highlight future challenges. After a brief historical background on RSD, we discuss the development of molecular tools such as transformation and transposon mutagenesis and discuss the apparent lack of genetic diversity within the L. xyli subsp. xyli world population. We go on to discuss the sequencing of the genome of L. xyli subsp. xyli, describe the key findings and suggest some future research based on known deficiencies that will capitalise on this tremendous knowledge base to which we now have access.