139 resultados para Modular neural systems
em University of Queensland eSpace - Australia
Resumo:
The present study investigates human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that we specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. We did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. We found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions. (C) 2001 Wiley-Liss, Inc.
Resumo:
Objectives: This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Methods: Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Results: Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Conclusions: Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In relation to motor control, the basal ganglia have been implicated in both the scaling and focusing of movement. Hypokinetic and hyperkinetic movement disorders manifest as a consequence of overshooting and undershooting GPi (globus pallidus internus) activity thresholds, respectively. Recently, models of motor control have been borrowed to translate cognitive processes relating to the overshooting and undershooting of GPi activity, including attention and executive function. Linguistic correlates, however, are yet to be extrapolated in sufficient detail. The aims of the present investigation were to: (1) characterise cognitive-linguistic processes within hypokinetic and hyperkinetic neural systems, as defined by motor disturbances; (2) investigate the impact of surgically-induced GPi lesions upon language abilities. Two Parkinsonian cases with opposing motor symptoms (akinetic versus dystonic/dyskinetic) served as experimental subjects in this research. Assessments were conducted both prior to as well as 3 and 12 months following bilateral posteroventral pallidotomy (PVP). Reliable changes in performance (i.e. both improvements and decrements) were typically restricted to tasks demanding complex linguistic operations across subjects. Hyperkinetic motor symptoms were associated with an initial overall improvement in complex language function as a consequence of bilateral PVP, which diminished over time, suggesting a decrescendo effect relative to surgical beneficence. In contrast, hypokinetic symptoms were associated with a more stable longitudinal linguistic profile, albeit defined by higher proportions of reliable decline versus improvement in postoperative assessment scores. The above findings endorsed the integration of the GPi within cognitive mechanisms involved in the arbitration of complex language functions. In relation to models of motor control, 'focusing' was postulated to represent the neural processes underpinning lexical-semantic manipulation, and 'scaling' the potential allocation of cognitive resources during the mediation of high-level linguistic tasks. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.
Resumo:
The coordination of movement is governed by a coalition of constraints. The expression of these constraints ranges from the concrete—the restricted range of motion offered by the mechanical configuration of our muscles and joints; to the abstract—the difficulty that we experience in combining simple movements into complex rhythms. We seek to illustrate that the various constraints on coordination are complementary and inclusive, and the means by which their expression and interaction are mediated systematically by the integrative action of the central nervous system (CNS). Beyond identifying the general principles at the behavioural level that govern the mutual interplay of constraints, we attempt to demonstrate that these principles have as their foundation specific functional properties of the cortical motor systems. We propose that regions of the brain upstream of the motor cortex may play a significant role in mediating interactions between the functional representations of muscles engaged in sensorimotor coordination tasks. We also argue that activity in these ldquosupramotorrdquo regions may mediate the stabilising role of augmented sensory feedback.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We introduce a novel way of measuring the entropy of a set of values undergoing changes. Such a measure becomes useful when analyzing the temporal development of an algorithm designed to numerically update a collection of values such as artificial neural network weights undergoing adjustments during learning. We measure the entropy as a function of the phase-space of the values, i.e. their magnitude and velocity of change, using a method based on the abstract measure of entropy introduced by the philosopher Rudolf Carnap. By constructing a time-dynamic two-dimensional Voronoi diagram using Voronoi cell generators with coordinates of value- and value-velocity (change of magnitude), the entropy becomes a function of the cell areas. We term this measure teleonomic entropy since it can be used to describe changes in any end-directed (teleonomic) system. The usefulness of the method is illustrated when comparing the different approaches of two search algorithms, a learning artificial neural network and a population of discovering agents. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulations are used for investigating the impact of external noise. Results of sensitivity analysis are consistent with those obtained by stochastic simulations. Stochastic models with external noise can be used for studying the robustness not only to external noise but also to parameter variations. For external noise we also use stochastic models to study the robustness of the function of each gene and that of the system.