5 resultados para Modifications chimiques
em University of Queensland eSpace - Australia
Resumo:
Background and Objectives: This paper reports on historical changes in assessment culminating in the experience of one discipline with negotiated student feedback that has helped design and modify assessment to cater for the requirements of both students and teachers. The standard of assessment required to pass Obstetrics and Gynaecology in the four year graduate entry program in the School of Medicine at The University of Queensland, Brisbane, Australia has become less formalised and more collaborative. Changes in assessment in this discipline over the last 20 years reflect the development of an understanding of the educational principles associated with adult teaching and learning. Assessment has evolved from being teacher focussed, with questionable reliability, validity, and emphasis on outcomes, to being focussed on learning and the student. Multiplechoice examinations, combined with a collaborative approach to the reliability and validity of questions and answers and a debrief or feedback session have been found to provide an assessment format that is art acceptable measure oflearning for both teachers and students. Changes in assessment reflect a collaborative process between teachers and students based on principles of adult learning and involving negotiated student feedback. Our experience with this form of negotiated outcome for assessment is presented together with suggestions for improvement and is contrasted with assessment methods used in this department over the last 20 years. Change and refinement will continue as medical programs strive to meet the learning needs of students and assessment outcomes that are acceptable to its teachers.
Resumo:
Of those explants tested, immature zygotic embryo tissues proved to be the best for initiating callus with potential for somatic embryogenesis. Slicing of this tissue and use of the central sections (near to and including the meristematic tissue) gave the best embryogenic response. Slices that were placed under illumination necrosed more rapidly and to a greater degree than those incubated in the dark. Explant slice necrosis could be prevented or severely retarded by the addition of activated charcoal into the medium. Washing the explants for short periods of time prior to culture was also found to improve callus production. Prolonged washing resulted in low rates of callus production. In an attempt to prevent ethylene accumulation in the culture vessel headspace, AVG, an ethylene biosynthesis inhibitor and STS, a chemical which reduces the physiological action of ethylene, were successfully used to promote somatic embryogenesis. Spermidine, putrescine and spermine, polyamines that are known to delay plant senescence and promote somatic embryogenesis in some plant species, enhanced the rate of somatic embryogenesis when they were introduced into the callus induction medium. The use of polyethylene glycol in combination with abscisic acid helped promote somatic embryo formation and maturation as well as the subsequent formation of plantlets. The use of all of these improvements together has created a new and improved protocol for coconut somatic embryogenesis. This new protocol puts significant emphasis on improving the in vitro ecology of the explant, callus and somatic embryogenic tissues.
Resumo:
Adiponectin is a secreted, multimeric protein with insulin-sensitizing, antiatherogenic, and antiinflammatory properties. Serum adiponectin consists of trimer, hexamer, and larger high-molecular-weight (HMW) multimers, and these HMW multimers appear to be the more bioactive forms. Multimer composition of adiponectin appears to be regulated; however, the molecular mechanisms involved are unknown. We hypothesize that regulation of adiponectin multimerization and secretion occurs via changes in posttranslational modifications (PTMs). Although a structural role for intertrimer disulfide bonds in the formation of hexamers and HMW multimers is established, the role of other PTMs is unknown. PTMs identified in murine and bovine adiponectin include hydroxylation of multiple conserved proline and lysine residues and glycosylation of hydroxylysines. By mass spectrometry, we confirmed the presence of these PTMs in human adiponectin and identified three additional hydroxylations on Pro71, Pro76, and Pro95. We also investigated the role of the five modified lysines in multimer formation and secretion of recombinant human adiponectin expressed in mammalian cell lines. Mutation of modified lysines in the collagenous domain prevented formation of HMW multimers, whereas a pharmacological inhibitor of prolyl- and lysyl-hydroxylases, 2,2'-dipyridyl, inhibited formation of hexamers and HMW multimers. Bacterially expressed human adiponectin displayed a complete lack of differentially modified isoforms and failed to form bona fide trimers and larger multimers. Finally, glucose-induced increases in HMW multimer production from human adipose explants correlated with changes in the two-dimensional electrophoresis profile of adiponectin isoforms. Collectively, these data suggest that adiponectin multimer composition is affected by changes in PTM in response to physiological factors.
Resumo:
This paper proposes a framework based on Defeasible Logic (DL) to reason about normative modifications. We show how to express them in DL and how the logic deals with conflicts between temporalised normative modifications. Some comments will be given with regard to the phenomenon of retroactivity.