8 resultados para Mode 2
em University of Queensland eSpace - Australia
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
There has been a great deal of discussion about the need for interdisciplinary, applied research to service the needs of the knowledge economy and to solve the broader complex theoretical problems of the twenty-first century. This is known as 'Mode 2' knowledge production. Yet, university research higher degree programs continue to be largely disciplinary-based. While there has been a rise in the number of research students working on industry-related, applied projects, very few research students gain exposure to interdisciplinary research processes. This paper explores several examples of interdisciplinary doctoral programs based in North America and Australia and seeks to draw upon examples of undergraduate interdisciplinary learning and epistemology. In reviewing this theoretical work and a number of strategies implemented at an Australian university, the paper begins to imagine an interdisciplinary doctoral pedagogy.
Resumo:
This study documents two different modes of berm development: (I) vertical growth at spring tides or following significant beach cut due to substantial swash overtopping, and (2) horizontal progradation at neap tides through the formation of a proto-berm located lower and further seaward of the principal berm. Concurrent high-frequency measurements of bed elevation and the associated wave runup distribution reveal the details of each of these berm growth modes. In mode I sediment is eroded from the inner surf and lower swash zone where swash interactions are prevalent. The net transport of this sediment is landward only, resulting in accretion onto the upper beach face and over the berm crest. The final outcome is a steepening of the beach face gradient, a change in the profile shape towards concave and rapid vertical and horizontal growth of the berm. In mode 2 sediment is eroded from the lower two-thirds of the active swash zone during the rising tide and is transported both landward and seaward. On the falling tide sediment is eroded from the inner surf and transported landward to backfill the zone eroded on the rising tide. The net result is relatively slow steepening of the beach face, a change of the profile shape towards convex, and horizontal progradation through the formation of a neap berm. The primary factor determining which mode of berm growth occurs is the presence or absence of swash overtopping at the time of sediment accumulation on the beach face. This depends on the current phase of the spring-neap tide cycle, the wave runup height (and indirectly offshore wave conditions) and the height of the pre-existing berm. A conceptual model for berm morphodynamics is presented, based on sediment transport shape functions measured during the two modes of berm growth. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence of sodium (Na) on nucleation and growth of the Al-Si eutectic in a commercial hypoeutectic Al-Si-Cu-Mg foundry alloy has been investigated. The microstructural evolution during eutectic solidification was studied by a quenching technique. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites by EBSD, the eutectic solidification mode could be determined. The results show that the eutectic solidification starts near the mould wall and evolves with front growth opposite the thermal gradient on a macro-scale, and on a micro-scale with independent heterogeneous nucleation of eutectic grains in interdendritic spaces. Na-modified alloys therefore behave significantly differently from those modified by other elemental additions.
Resumo:
We consider a possible technique for mode locking an atom laser, based on the generation of a dark soliton in a ring-shaped Bose-Einstein condensate, with repulsive atomic interactions. The soliton is a kink, with angular momentum per particle equal to (h) over bar /2. It emerges naturally when the condensate is stirred at the soliton velocity and cleansed with a periodic out coupler. The result is a replicating coherent field inside the atom laser, stabilized by topology. We give a numerical demonstration of the generation and stabilization of the soliton.
Resumo:
We show that by making conditional measurements on the Einstein-Podolsky-Rosen (EPR) squeezed vacuum [T. Opatrny, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61, 032302 (2000)], one can improve the efficacy of teleportation for both the position-difference, momentum-sum, and number-difference, phase-sum continuous variable teleportation protocols. We investigate the relative abilities of the standard and conditional EPR states, and show that by conditioning we can improve the fidelity of teleportation of coherent states from below to above the (F) over bar =2/3 boundary, thereby achieving unambiguously quantum teleportation.
Resumo:
The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23degreesC and (3) heated via convective transfer by increasing water temperature from 23degreesC to 35degreesC. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23degreesC. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (
Resumo:
A switch-mode assisted linear amplifier (SMALA) combining a linear (Class B) and a switch-mode (Class D) amplifier is presented. The usual single hysteretic controlled half-bridge current dumping stage is replaced by two parallel buck converter stages, in a parallel voltage controlled topology. These operate independently: one buck converter sources current to assist the upper Class B output device, and a complementary converter sinks current to assist the lower device. This topology lends itself to a novel control approach of a dead-band at low power levels where neither class D amplifier assists, allowing the class B amplifier to supply the load without interference, ensuring high fidelity. A 20 W implementation demonstrates 85% efficiency, with distortion below 0.08% measured across the full audio bandwidth at 15 W. The class D amplifier begins assisting at 2 W, and below this value, the distortion was below 0.03%. Complete circuitry is given, showing the simplicity of the additional class D amplifier and its corresponding control circuitry.