2 resultados para Mobile application testing
em University of Queensland eSpace - Australia
Resumo:
This study examined the utility of a stress/coping model in explaining adaptation in two groups of people at-risk for Huntington's Disease (HD): those who have not approached genetic testing services (non-testees) and those who have engaged a testing service (testees). The aims were (1) to compare testees and non-testees on stress/coping variables, (2) to examine relations between adjustment and the stress/coping predictors in the two groups, and (3) to examine relations between the stress/coping variables and testees' satisfaction with their first counselling session. Participants were 44 testees and 40 non-testees who completed questionnaires which measured the stress/coping variables: adjustment (global distress, depression, health anxiety, social and dyadic adjustment), genetic testing concerns, testing context (HD contact, experience, knowledge), appraisal (control, threat, self-efficacy), coping strategies (avoidance, self-blame, wishful thinking, seeking support, problem solving), social support and locus of control. Testees also completed a genetic counselling session satisfaction scale. As expected, non-testees reported lower self-efficacy and control appraisals, higher threat and passive avoidant coping than testees. Overall, results supported the hypothesis that within each group poorer adjustment would be related to higher genetic testing concerns, contact with HD, threat appraisals, passive avoidant coping and external locus of control, and lower levels of positive experiences with HD, social support, internal locus of control, self-efficacy, control appraisals, problem solving, emotional approach and seeking social support coping. Session satisfaction scores were positively correlated with dyadic adjustment, problem solving and positive experience with HD, and inversely related to testing concerns, and threat and control appraisals. Findings support the utility of the stress/coping model in explaining adaptation in people who have decided not to seek genetic testing for HD and those who have decided to engage a genetic testing service.
Resumo:
Support vector machines (SVMs) have recently emerged as a powerful technique for solving problems in pattern classification and regression. Best performance is obtained from the SVM its parameters have their values optimally set. In practice, good parameter settings are usually obtained by a lengthy process of trial and error. This paper describes the use of genetic algorithm to evolve these parameter settings for an application in mobile robotics.