77 resultados para Mixed-integer nonlinear programming
em University of Queensland eSpace - Australia
Resumo:
Hannenhalli and Pevzner developed the first polynomial-time algorithm for the combinatorial problem of sorting of signed genomic data. Their algorithm solves the minimum number of reversals required for rearranging a genome to another when gene duplication is nonexisting. In this paper, we show how to extend the Hannenhalli-Pevzner approach to genomes with multigene families. We propose a new heuristic algorithm to compute the reversal distance between two genomes with multigene families via the concept of binary integer programming without removing gene duplicates. The experimental results on simulated and real biological data demonstrate that the proposed algorithm is able to find the reversal distance accurately. ©2005 IEEE
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.
Resumo:
The problem of designing spatially cohesive nature reserve systems that meet biodiversity objectives is formulated as a nonlinear integer programming problem. The multiobjective function minimises a combination of boundary length, area and failed representation of the biological attributes we are trying to conserve. The task is to reserve a subset of sites that best meet this objective. We use data on the distribution of habitats in the Northern Territory, Australia, to show how simulated annealing and a greedy heuristic algorithm can be used to generate good solutions to such large reserve design problems, and to compare the effectiveness of these methods.
Resumo:
Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.
Resumo:
These notes follow on from the material that you studied in CSSE1000 Introduction to Computer Systems. There you studied details of logic gates, binary numbers and instruction set architectures using the Atmel AVR microcontroller family as an example. In your present course (METR2800 Team Project I), you need to get on to designing and building an application which will include such a microcontroller. These notes focus on programming an AVR microcontroller in C and provide a number of example programs to illustrate the use of some of the AVR peripheral devices.
Resumo:
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.
Resumo:
We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent. In the first part of this work it is assumed that the coeffcients Q and h are at least continuous. Moreover Q is positive on overline Omega and lambda > 0 is a parameter. We examine the common effect of the mean curvature and the shape of the graphs of the coeffcients Q and h on the existence of low energy solutions. In the second part of this work we consider the same problem with Q replaced by - Q. In this case the problem can be supercritical and the existence results depend on integrability conditions on Q and h.
Resumo:
We are concerned with determining values of, for which there exist nodal solutions of the boundary value problems u" + ra(t) f(u) = 0, 0 < t < 1, u(O) = u(1) = 0. The proof of our main result is based upon bifurcation techniques.