3 resultados para Mixed layer depth

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

REE analyses were performed on authigenic illitic clay. minerals from Late Permian mudrocks, sandstones and bentonites from the Bowen Basin (Australia). The mixed-layer illite-smectite exhibit REE patterns with an obvious fractionation of the HREE from the LREE and MREE, which is an apparent function of degree of illitization reaction. The highly illitic (R greater than or equal to 3) illite-smectite from the northern Bowen Basin show a depletion of LREE relative to the less illitic (R=0 and 1) clays. In contrast, an enrichment of HREE for the illite-rich clays relative to less. illitic clays is evident for the southern Bowen Basin samples. The North American Shale Composite-normalized (La/Lu)(sn) ratios show negative correlations with the illite content in illite-smectite and positive correlations with the delta(18)O values of the clays for both the northern and southern Bowen Basin samples. These correlations indicate that the increasing depletion of LREE in hydrothermal fluids is a function of increasing water/rock ratios in the northern Bowen Basin. Good negative correlations between (La/Lu)(sn) ratios and illite content in illite-smectite from the southern Bowen Basin suggest the involvement of fluids with higher alkalinity and higher pH in low water/ rock ratio conditions. Increasing HREE enrichment with delta(18)O decrease indicates the effect of increasing temperature at low water/rock ratios in the southern Bowen Basin. Results of the present study confirm the conclusions of some earlier studies suggesting that REE in illitic clay minerals are mobile and fractionated during illitization and that this fact should be considered in studies of sedimentary processes and in identifying provenance. Moreover, our results show that REE systematic of illitic clay minerals can be applied as an useful technique to gain information about physico-chemical conditions during thermal and fluid flow events in certain sedimentary basins. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples of the cyanobacterium Microcystis aeruginosa from a small pond were used in laboratory experiments with a grid-stirred tank to quantify the effect of turbulent mixing on colony size. Turbulent dissipation in the tank was varied from 10(-9) m(2) s(-3) to 10(-4) m(2) s(-3), covering the range of turbulence intensities experienced by M. aeruginosa colonies in the field and exceeding the maximum dissipation by two orders of magnitude. Large colonies broke up into smaller colonies during the experiments; the mass fraction of colonies with diameter less than 200 mum increased over time. Colony disaggregation was observed to increase with turbulent dissipation. The maximum stable colony diameter across all experiments was in the range 220-420 mum. The overall change in size distribution during the experiments was relatively small, and the colony size distribution remained very broad throughout the experiments. Since colony size affects migration velocity, susceptibility to grazing and surface area to volume ratios, more work is needed to determine how to best represent this broad size distribution when modelling M. aeruginosa populations.