4 resultados para Misclassification
em University of Queensland eSpace - Australia
Resumo:
Rocks used as construction aggregate in temperate climates deteriorate to differing degrees because of repeated freezing and thawing. The magnitude of the deterioration depends on the rock's properties. Aggregate, including crushed carbonate rock, is required to have minimum geotechnical qualities before it can be used in asphalt and concrete. In order to reduce chances of premature and expensive repairs, extensive freeze-thaw tests are conducted on potential construction rocks. These tests typically involve 300 freeze-thaw cycles and can take four to five months to complete. Less time consuming tests that (1) predict durability as well as the extended freeze-thaw test or that (2) reduce the number of rocks subject to the extended test, could save considerable amounts of money. Here we use a probabilistic neural network to try and predict durability as determined by the freeze-thaw test using four rock properties measured on 843 limestone samples from the Kansas Department of Transportation. Modified freeze-thaw tests and less time consuming specific gravity (dry), specific gravity (saturated), and modified absorption tests were conducted on each sample. Durability factors of 95 or more as determined from the extensive freeze-thaw tests are viewed as acceptable—rocks with values below 95 are rejected. If only the modified freeze-thaw test is used to predict which rocks are acceptable, about 45% are misclassified. When 421 randomly selected samples and all four standardized and scaled variables were used to train aprobabilistic neural network, the rate of misclassification of 422 independent validation samples dropped to 28%. The network was trained so that each class (group) and each variable had its own coefficient (sigma). In an attempt to reduce errors further, an additional class was added to the training data to predict durability values greater than 84 and less than 98, resulting in only 11% of the samples misclassified. About 43% of the test data was classed by the neural net into the middle group—these rocks should be subject to full freeze-thaw tests. Thus, use of the probabilistic neural network would meanthat the extended test would only need be applied to 43% of the samples, and 11% of the rocks classed as acceptable would fail early.
Resumo:
Registration of births, recording deaths by age, sex and cause, and calculating mortality levels and differentials are fundamental to evidence-based health policy, monitoring and evaluation. Yet few of the countries with the greatest need for these data have functioning systems to produce them despite legislation providing for the establishment and maintenance of vital registration. Sample vital registration (SVR), when applied in conjunction with validated verbal autopsy, procedures and implemented in a nationally representative sample of population clusters represents an affordable, cost-effective, and sustainable short- and medium-term solution to this problem. SVR complements other information sources by producing age-, sex-, and cause-specific mortality data that are more complete and continuous than those currently available. The tools and methods employed in an SVR system, however, are imperfect and require rigorous validation and continuous quality assurance; sampling strategies for SVR are also still evolving. Nonetheless, interest in establishing SVR is rapidly growing in Africa and Asia. Better systems for reporting and recording data on vital events will be sustainable only if developed hand-in-hand with existing health information strategies at the national and district levels; governance structures; and agendas for social research and development monitoring. If the global community wishes to have mortality measurements 5 or 10 years hence, the foundation stones of SVR must be laid today.
Resumo:
Objectives: To validate verbal autopsy (VA) procedures for use in sample vital registration. Verbal autopsy is an important method for deriving cause-specific mortality estimates where disease burdens are greatest and routine cause-specific mortality data do not exist. Methods: Verbal autopsies and medical records (MR) were collected for 3123 deaths in the perinatal/neonatal period, post-neonatal < 5 age group, and for ages of 5 years and over in Tanzania. Causes of death were assigned by physician panels using the International Classification of Disease, revision 10. Validity was measured by: cause-specific mortality fractions (CSMF); sensitivity; specificity and positive predictive value. Medical record diagnoses were scored for degree of uncertainty, and sensitivity and specificity adjusted. Criteria for evaluating VA performance in generating true proportional mortality were applied. Results: Verbal autopsy produced accurate CSMFs for nine causes in different age groups: birth asphyxia; intrauterine complications; pneumonia; HIV/AIDS; malaria (adults); tuberculosis; cerebrovascular diseases; injuries and direct maternal causes. Results for 20 other causes approached the threshold for good performance. Conclusions: Verbal autopsy reliably estimated CSMFs for diseases of public health importance in all age groups. Further validation is needed to assess reasons for lack of positive results for some conditions.
Resumo:
Traditionally, machine learning algorithms have been evaluated in applications where assumptions can be reliably made about class priors and/or misclassification costs. In this paper, we consider the case of imprecise environments, where little may be known about these factors and they may well vary significantly when the system is applied. Specifically, the use of precision-recall analysis is investigated and compared to the more well known performance measures such as error-rate and the receiver operating characteristic (ROC). We argue that while ROC analysis is invariant to variations in class priors, this invariance in fact hides an important factor of the evaluation in imprecise environments. Therefore, we develop a generalised precision-recall analysis methodology in which variation due to prior class probabilities is incorporated into a multi-way analysis of variance (ANOVA). The increased sensitivity and reliability of this approach is demonstrated in a remote sensing application.