75 resultados para Mirror Movement
em University of Queensland eSpace - Australia
Resumo:
The ease with which we perform tasks such as opening the lid of a jar, in which the two hands execute quite different actions, belies the fact that there is a strong tendency for the movements of the upper limbs to be drawn systematically towards one another. Mirror movements, involuntary contractions during intended unilateral engagement of the opposite limb, are considered pathological, as they occur in association with specific disorders of the CNS. Yet they are also observed frequently in normally developing children, and motor irradiation, an increase in the excitability of the (opposite) homologous motor pathways when unimanual movements are performed, is a robust feature of the mature motor system. The systematic nature of the interactions that occur between the upper limbs has also given rise to the expectation that functional improvements in the control of a paretic limb may occur when movements are performed in a bimanual context. In spite of the ubiquitous nature of these phenomena, there is remarkably little consensus concerning the neural basis of their mediation. In the present review, consideration is given to the putative roles of uncrossed corticofugal fibers, branched bilateral corticomotoroneuronal projections, and segmental networks. The potential for bilateral interactions to occur in various brain regions including the primary motor cortex, the supplementary motor area, non-primary motor areas, the basal ganglia, and the cerebellum is also explored. This information may provide principled bases upon which to evaluate and develop task and deficit-specific programs of movement rehabilitation and therapy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.
Resumo:
The effects of temporal precision constraints and movement amplitude on performance of an interceptive aiming task were examined. Participants were required to strike a moving target object with a 'bat' by moving the bat along a straight path (constrained by a linear slide) perpendicular to the path of the target. Temporal precision constraints were defined in terms of the time period (or window) within which contact with the target was possible. Three time windows were used (approx. 35, 50 and 65 ms) and these were achieved either by manipulating the size of the bat (experiment 1a), the size of the target (experiment 1b) or the speed of the target (experiment 2). In all experiments, movement time (MT) increased in proportion to movement amplitude but was only affected by differences in the temporal precision constraint if this was achieved by variation in the target's speed. In this case the MT was approximately inversely proportional to target speed. Peak movement speed was affected by temporal accuracy constraints in all three experiments: participants reached higher speeds when the temporal precision required was greater. These results are discussed with reference to the speed-accuracy trade-off observed for temporally constrained aiming movements. It is suggested that the MT and speed of interceptive aiming movements may be understood as responses to the spatiotemporal constraints of the task.
Resumo:
Studies concerning the processing of natural scenes using eye movement equipment have revealed that observers retain surprisingly little information from one fixation to the next. Other studies, in which fixation remained constant while elements within the scene were changed, have shown that, even without refixation, objects within a scene are surprisingly poorly represented. Although this effect has been studied in some detail in static scenes, there has been relatively little work on scenes as we would normally experience them, namely dynamic and ever changing. This paper describes a comparable form of change blindness in dynamic scenes, in which detection is performed in the presence of simulated observer motion. The study also describes how change blindness is affected by the manner in which the observer interacts with the environment, by comparing detection performance of an observer as the passenger or driver of a car. The experiments show that observer motion reduces the detection of orientation and location changes, and that the task of driving causes a concentration of object analysis on or near the line of motion, relative to passive viewing of the same scene.
Resumo:
The temporal parameters of the response of the trunk muscles associated with movement of the lower limb were investigated in people with and without low back pain (LBP). The weight shift component of the task was completed voluntarily prior to a stimulus to move to allow investigation of the movement component of the response. In the control subjects the onset of electromyographic (EMG) activity of all trunk muscles preceded that of the muscle responsible for limb movement, thus contributing to the feed forward postural response. The EMG onset of transversus abdominis was delayed in the LBP subjects with movement in each direction, while the EMG onsets of rectus abdominis, erector spinae, and oblique abdominal muscles were delayed with specific movement directions. This result provides evidence of a change in the postural control of the trunk in people with LBP.
Resumo:
Evaluation of trunk movements, trunk muscle activation, intra-abdominal pressure and displacement of centres of pressure and mass was undertaken to determine whether trunk orientation is a controlled variable prior to and during rapid bilateral movement of the upper limbs. Standing subjects performed rapid bilateral symmetrical upper limb movements in three directions (flexion, abduction and extension). The results indicated a small (0.4-3.3 degrees) but consistent initial angular displacement between the segments of the trunk in a direction opposite to that produced by the reactive moments resulting from limb movement. Phasic activation of superficial trunk muscles was consistent with this pattern of preparatory motion and with the direction of motion of the centre of mass. In contrast, activation of the deep abdominal muscles was independent of the direction of limb motion, suggesting a non-direction specific contribution to spinal stability. The results support the opinion that feedforward postural responses result in trunk movements, and that orientation of the trunk and centre of mass are both controlled variables in relation to rapid limb movements.
Resumo:
Movement-related cortical potentials recorded from the scalp reveal increasing cortical activity occurring prior to voluntary movement. Studies of set-related cortical activity recorded from single neurones within premotor and supplementary motor areas in monkeys suggest that such premovement activity may act to prime activity of appropriate motor units in readiness to move, thereby facilitating the movement response. Such a role of early stage premovement activity in movement-related cortical potentials was investigated by examining the relationship between premovement cortical activity and movement initiation or reaction times. Parkinson's disease and control subjects performed a simple button-pressing reaction time task and individual movement-related potentials were averaged for responses with short compared with long reaction times. For Parkinson's disease subjects but not for the control subjects, early stage premovement cortical activity was significantly increased in amplitude for faster reaction times, indicating that there is indeed a relationship between premovement cortical activity amplitude and movement initiation or reaction times. In support of studies of set-related cortical activity in monkeys, it is therefore suggested that early stage premovement activity reflects the priming of appropriate motor units of primary motor cortex, thereby reducing movement initiation or reaction times. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Hypokinetic movement can be greatly improved in Parkinson's disease patients by the provision of external cues to guide movement. It has recently been reported, however, that movement performance in parkinsonian patients can be similarly improved in the absence of external cues by using attentional strategies, whereby patients are instructed to consciously attend to particular aspects of the movement which would normally be controlled automatically. To study the neurophysiological basis of such improvements in performance associated with the use of attentional strategies, movement-related cortical potentials were examined in Parkinson's disease and control subjects using a reaction time paradigm. One group of subjects were explicitly instructed to concentrate on internally timed responses to anticipate the presentation of a predictably timed go signal. Other subjects were given no such instruction regarding attentional strategies. Early-stage premovement activity of movement-related potentials was significantly increased in amplitude and reaction times were significantly faster for Parkinson's disease subjects when instructed to direct their attention toward internally generating responses rather than relying on external cues. It is therefore suggested that the use of attentional strategies may allow movement to be mediated by less automatic and more conscious attentional motor control processes which may be less impaired by basal ganglia dysfunction, and thereby improve movement performance in Parkinson's disease.
Resumo:
Large numbers of adults of certain species of butterfly flying in an apparently 'purposeful' manner are often noted by entomologists and the general public. Occasionally, these are recorded in the literature. Using these records we summarise information regarding the direction of movement in Australian butterflies and test whether there are consistent patterns that could account for known seasonal shifts in geographical range. The data were analysed using contingency tables and directionality statistics. Vanessa itea, Vanessa kershawi, Danaus plexippus, Danaus chrysippus and Badamia exclamationis flew predominately south in the spring-summer and north in the autumn-winter. Tirumala hamata has a strong southern component to its flight in spring but, as in Euploea core, appears non-directional in the autumn. For many supposedly known migratory species, the number of literature records are few, particularly in one season (mainly autumn). Thus, for Appias paulina, four of seven records were south in the spring-summer, as were six of nine records for Catopsilia pomona, and three of five for Zizina labradus. For Belenois java, flight records were only available for the spring and these showed geographical differences; predominantly north-west in northern Australia (Queensland) and south-west in southern Australia (Victoria, New South Wales). There were too few records for Papilio demoleus in the literature (four only) to draw any conclusions. Major exceptions to the seasonal trend of south in the spring and north in the autumn were Junonia villida, which showed a predominant north-westward direction in both seasons, and Eurema smilax, with a predominant southern or western flight in both seasons. We discuss these species specific trends in migration direction in relation to seasonal shifts in suitable habitat conditions, possible cues used in orientation and in timing changes in direction.