15 resultados para Mining and Construction Automation
em University of Queensland eSpace - Australia
Resumo:
Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.
Resumo:
The suspen-dome system is a new structural form that has become popular in the construction of long-span roof structures. These domes are very slender and lightweight, their configuration is complicated, and hence sequential consideration in the structural design is needed. This paper focuses on these considerations, which include the method for designing cable prestress force, a simplified analysis method, and the estimation of buckling capacity. Buckling is one of the most important problems for dome structures. This paper presents the findings of an intensive buckling study of the Lamella suspen-dome system that takes geometric imperfection, asymmetric loading, rise-to-span ratio, and connection rigidity into consideration. Finally, suggested design and construction guidelines are given in the conclusion of this paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The road to electric rope shovel automation is marked with technological innovations that include an increase in operational information available to mining operations. The CRCMining Shovel Operator Information System not only collects machine operational data but also provides the operator with knowledge-of-performance and influences his/her performance to achieve higher productivity with reduced machine duty. The operator’s behaviour is one of the most important aspects of the man-machine interaction to be considered before semi- or fully-automated shovel systems can be realised. This paper presents the results of the rope shovel studies conducted by CRCMining between 2002 and 2004, provides information on current research to improve shovel performance and briefly discusses the implications of human-system interactions on future designs of autonomous machines.
Resumo:
Stochastic simulation is a recognised tool for quantifying the spatial distribution of geological uncertainty and risk in earth science and engineering. Metals mining is an area where simulation technologies are extensively used; however, applications in the coal mining industry have been limited. This is particularly due to the lack of a systematic demonstration illustrating the capabilities these techniques have in problem solving in coal mining. This paper presents two broad and technically distinct areas of applications in coal mining. The first deals with the use of simulation in the quantification of uncertainty in coal seam attributes and risk assessment to assist coal resource classification, and drillhole spacing optimisation to meet pre-specified risk levels at a required confidence. The second application presents the use of stochastic simulation in the quantification of fault risk, an area of particular interest to underground coal mining, and documents the performance of the approach. The examples presented demonstrate the advantages and positive contribution stochastic simulation approaches bring to the coal mining industry