3 resultados para Minimal Systems

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Minimal representations are known to have no redundant elements, and are therefore of great importance. Based on the notions of performance and size indices and measures for process systems, the paper proposes conditions for a process model being minimal in a set of functionally equivalent models with respect to a size norm. Generalized versions of known procedures to obtain minimal process models for a given modelling goal, model reduction based on sensitivity analysis and incremental model building are proposed and discussed. The notions and procedures are illustrated and compared on a simple example, that of a simple nonlinear fermentation process with different modelling goals and on a case study of a heat exchanger modelling. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For leased equipment, the lessor carries out the maintenance of the equipment. Usually, the contract of lease specifies the penalty for equipment failures and for repairs not being carried out within specified time limits. This implies that optimal preventive maintenance policies must take these penalty costs into account and properly traded against the cost of preventive maintenance actions. The costs associated with failures are high as unplanned corrective maintenance actions are costly and the resulting penalties due to lease contract terms being violated. The paper develops a model to determine the optimal parameters of a preventive maintenance policy that takes into account all these costs to minimize the total expected cost to the lessor for new item lease. The parameters of the policy are (i) the number of preventive maintenance actions to be carried out over the lease period, (ii) the time instants for such actions, and (iii) the level of action. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an architecture for pervasive computing which utilizes context information to provide adaptations based on vertical handovers (handovers between heterogeneous networks) while supporting application Quality of Service (QoS). The future of mobile computing will see an increase in ubiquitous network connectivity which allows users to roam freely between heterogeneous networks. One of the requirements for pervasive computing is to adapt computing applications or their environment if current applications can no longer be provided with the requested QoS. One of possible adaptations is a vertical handover to a different network. Vertical handover operations include changing network interfaces on a single device or changes between different devices. Such handovers should be performed with minimal user distraction and minimal violation of communication QoS for user applications. The solution utilises context information regarding user devices, user location, application requirements, and network environment. The paper shows how vertical handover adaptations are incorporated into the whole infrastructure of a pervasive system