8 resultados para Minicoy Atoll
em University of Queensland eSpace - Australia
Resumo:
Water level and current measurements from two virtually enclosed South Pacific atolls, Manihiki and Rakahanga, support a new lagoon flushing mechanism which is driven by waves and modulated by the ocean tide for virtually enclosed atolls. This is evident because the lagoon water level remains above the ocean at all tidal phases (i.e., ruling out tidal flushing) and because the average lagoon water level rises significantly during periods with large waves. Hence, we develop a model by which the lagoons are flushed by waves pumping of ocean water into the lagoon and gravity draining water from the lagoon over the reef rim. That is, the waves on the exposed side push water into the lagoon during most of the tidal cycle while water leaves the lagoon on the protected side for most of the tidal cycle. This wave-driven through flow flushing is shown to be more efficient than alternating tidal flushing with respect to water renewal. Improved water quality should therefore be sought through enhancement of the natural wave pumping rather than by blasting deep channels which would change the system to an alternating tide-driven one.
Resumo:
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m(-2)), and productive (up to 110 mg O-2 m(-2) h(-1)) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O-2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92-995 mg chl a m(-2)) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.
Resumo:
The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.
Resumo:
Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: Kiribati, a remote atoll island country of the Pacific, has serious problems of vitamin A deficiency (VAD). Thus, it is important to identify locally grown acceptable foods that might be promoted to alleviate this problem. Pandanus fruit (Pandanus tectorius) is a well-liked indigenous Kiribati food with many cultivars that have orange/yellow flesh, indicative of carotenoid content. Few have been previously analysed. Aim: This study was conducted to identify cultivars of pandanus and other foods that could be promoted to alleviate VAD in Kiribati. Method: Ethnography was used to select foods and assess acceptability factors. Pandanus and other foods were analysed for beta- and alpha-carotene, beta-cryptoxanthin, lutein, zeaxanthin, lycopene and total carotenoids using high-performance liquid chromatography. Results: Of the nine pandanus cultivars investigated there was a great range of provitamin A carotenoid levels (from 62 to 19 086 mu g beta-carotene/100 g), generally with higher levels in those more deeply coloured. Seven pandanus cultivars, one giant swamp taro (Cyrtosperma chamissonis) cultivar and native fig (Ficus tinctoria) had significant provitamin A carotenoid content, meeting all or half of estimated daily vitamin A requirements within normal consumption patterns. Analyses in different laboratories confirmed high carotenoid levels in pandanus but showed that there are still questions as to how high the levels might be, owing to variation arising from different handling/preparation/analytical techniques. Conclusions: These carotenoid-rich acceptable foods should be promoted for alleviating VAD in Kiribati and possibly other Pacific contexts where these foods are important. Further research in the Pacific is needed to identify additional indigenous foods with potential health benefits.